Regiospecific and Stereospecific Reactions of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$ with Rhenium Alkyls $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{R})$. α - vs. β-Hydride Abstraction

William A. Kiel, ${ }^{\text {la }}$ Gong-Yu Lin, ${ }^{1 \mathbf{1 a}}$ Gerardo S. Bodner, ${ }^{\text {lb }}$ and J. A. Gladysz* ${ }^{\text {la,b, } 2}$
Contribution from the Departments of Chemistry, University of Utah, Salt Lake City, Utah 84112, and University of California, Los Angeles, California 90024. Received December 20, 1982

Abstract

Alkyls $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{R})\left(2, \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3} ; 3, \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} ; 4, \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} ; 5, \mathrm{R}\right.$ $\left.=\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} ; 6, \mathrm{R}=\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ; 8, \mathrm{R}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$ are synthesized in $49-82 \%$ yields by Grignard or alkyllithium attack upon the appropriate $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CHR}^{\prime}\right)\right]^{+} \mathrm{PF}_{6}^{-}$precursor. The acyl $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}\left(\mathrm{NO}^{2}\right)\left(\mathrm{PPh}_{3}\right)-$ $\left(\mathrm{COCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ is prepared from $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{MgBr}(80 \%)$ and is reduced with excess BH_{3} to alkyl $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)(9,64 \%)$. These alkyls, and previously synthesized $(S S, R R)-(\eta-$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5}\right)((\mathrm{SS}, R R)-7)$ and $(S R, R S)-7$, are treated with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$at $-78{ }^{\circ} \mathrm{C}$, and the regiochemistry and stereochemistry of hydride abstraction is examined. Results obtained by use of appropriately labeled deuterated substrates are as follows: $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$abstracts the pro- $R \alpha$-hydride of $2-4$ to give alkylidenes $s c-\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CHR}^{\prime}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}$ (10k, $\mathrm{R}^{\prime}=\mathrm{CH}_{3} ; \mathbf{1 1 k}, \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{CH}_{3} ; \mathbf{1 2 k}, \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$). Upon warming to $10-25^{\circ} \mathrm{C}$, these equilibrate to (90 $\pm 2):(10 \pm 2)$ mixtures of $a c(10 t-12 \mathrm{t})$ and $s c \mathrm{Re}=\mathrm{C}$ geometric isomers. For $10 \mathrm{k} \rightarrow 10 \mathrm{t}, \Delta H^{*}=17.4 \pm 0.5 \mathrm{kcal} / \mathrm{mol}$ and $\Delta S^{*}=-7.3 \pm 2.0$ eu. $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$abstracts the β-hydride from 5 to give $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}$ (13) but does not appear to abstract hydride from 6. $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}-$ abstracts β-hydrides from $(S S, R R)-7$ and $(S R, R S)-7$ to give $(R R, S S)-\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}((R R, S S)-14)$ and ($\left.R S, S R\right)$-14, respectively. $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$ preferentially abstracts β-hydrides from the pro- R methyl group of 8 to give a $(92 \pm 1):(8 \pm 1)$ mixture of $(R R, S S)-[(\eta-$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{3}\right)\right]^{+} \mathrm{PF}_{6}-((R R, S S)-15)$ and $(R S, S R)-15 . \mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}^{-}$abstracts the pro- $R \alpha$ - and both β-hydrides from 9 to give $s c-\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\right]^{+} \mathrm{PF}_{6}^{-}(16 \mathrm{k}, 63 \%),(R R, S S)-14(18 \%)$, and $(R S, S R)-14$ (18\%). Ethylidene 10k is stereospecificially attacked by $\left.\mathrm{Li}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\right)_{3} \mathrm{BD}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{MgBr}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgBr}$, and PMe_{3} to give $(S R, R S)-2-\alpha-d_{1},(S S, R R)-\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{(}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{3}\right)((S S, R R)-17),(S S, R R)-7$ and $(S S, R R)-[(\eta-$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}\left({ }^{+} \mathrm{PMe}_{3}\right) \mathrm{CH}_{3}\right)\right] \mathrm{PF}_{6}^{-}((S S, R R)-18)$, respectively. Reaction of the $\mathbf{1 0 t} / \mathbf{1 0 k}$ equilibrium mixture with $\mathrm{Li}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{BD}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{MgBr}$, and PMe_{3} gives corresponding adducts as (10 ± 2): (90 ± 2) diastereomer mixtures. The protons of $10 \mathrm{t} / 10 \mathrm{k}$ exchange with acetone- d_{6} without added catalyst.

Introduction

Reactions of β-carbon-hydrogen bonds play a pivotal role in the chemistry of transition-metal alkyls. ${ }^{3}$ Of these, the thermal " β-hydride elimination", $\mathrm{L}_{n} \mathrm{MCH}_{2} \mathrm{CH}_{2} \mathrm{R} \rightarrow \mathrm{L}_{n} \mathrm{MH}+\mathrm{H}_{2} \mathrm{C}=$ CHR, has been the most thoroughly studied. ${ }^{4}$ The initial steps of catalytic olefin hydrogenation closely approximate the microscopic reverse of this elimination. ${ }^{5}$ The reaction of $\mathrm{L}_{n} \mathrm{MCH}_{2} \mathrm{CH}_{2} \mathrm{R}$ with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}^{-}$to give olefin complex $\mathrm{L}_{n} \mathrm{M}^{+}\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CHR}\right)$ and $\mathrm{Ph}_{3} \mathrm{CH}^{6}$ is a common bimolecular transformation which involves the $\beta-\mathrm{C}-\mathrm{H}$ bond.

Reactions of α-carbon-hydrogen bonds of transition-metal alkyls are much less common. ${ }^{3.7}$ Initially discovered examples involved substrates in which $\beta-\mathrm{C}-\mathrm{H}$ bonds were absent. Only a few cases exist of $\alpha-\mathrm{C}-\mathrm{H}$ bond reactivity when $\beta-\mathrm{C}-\mathrm{H}$ bonds are present. ${ }^{8}$ These are of special interest, since olefin metathesis (initiation) ${ }^{9}$ and possibly some olefin polymerizations ${ }^{8 c, 10}$ involve

[^0]key $\alpha-\mathrm{C}-\mathrm{H}$ bond activation steps. ${ }^{11}$
We recently communicated the synthesis of chiral rhenium alkyls of the formula $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{R}) .{ }^{12}$ When R $=-\mathrm{CH}_{2} \mathrm{CH}_{3}$ and $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$, these underwent regiospecific α-hydride abstraction upon treatment with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$to give alkylidenes $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CHCH}_{3}\right)\right]+\mathrm{PF}_{6}{ }^{-}(\mathbf{1 0})$ and $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right)\right]+\mathrm{PF}_{6}{ }^{-}(11)$, respectively. In this paper, we examine the reactions of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$with a series of structurally diverse $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{R})$ alkyls ${ }^{13}$ and thereby map the structural parameters which influence α / β regioselectivity. In a second facet of this study, we probe the stereochemistry of the reactions of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$with $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ $\operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{R})$. As will be disclosed, $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$exhibits a remarkable ability to discriminate between diastereotopic -H or -R groups in these hydride abstraction reactions.

Results

I. Preparation of Alkyls $\left(\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathbf{R e}(\mathbf{N O})\left(\mathbf{P P h}_{3}\right)(\mathrm{R})$. Primary rhenium alkyls $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{R}\right)$ were generally synthesized by the reaction of methylidene $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CH}_{2}\right)\right]^{+} \mathrm{PF}_{6}^{-}(\mathbf{1})^{14}$ with alkyllithium or Grignard reagents (eq 1). In most cases, $\mathbf{1}$ was generated (and used) in situ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ by the reaction of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)$ $\left(\mathrm{CH}_{3}\right)$ with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$. Alkyls 2-6 (eq 1) were isolated as orange

[^1]crystals or powders in $50-82 \%$ yields. Small amounts of (η $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{3}\right)$ accompanied the formation of 5 and 6 , even when isolated 1 was employed.

Secondary rhenium alkyls $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CHRR}^{\prime}\right)$ were prepared by the reaction of alkyllithium reagents $\mathrm{R}^{\prime} \mathrm{Li}$ with substituted alkylidenes $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(=\mathrm{CHR})\right]^{+} \mathrm{PF}_{6}{ }^{-}$. The synthesis of the $(S S, R R)$ and $(S R, R S)$ diastereomers ${ }^{15}$ of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{\left.\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5}\right)}((S S, R R)-7\right.$, $(S R,-$ $R S)$-7) by $\mathrm{CH}_{3} \mathrm{Li}$ attack upon benzylidene $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}$has been previously described. ${ }^{13 \mathrm{~b}}$ Isopropyl complex $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)(8)$ was synthesized in 49% yield by the reaction of $\mathrm{CH}_{3} \mathrm{Li}$ with ethylidene $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CHCH}_{3}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}(\mathbf{1 0})$. The somewhat low yield of $\mathbf{8}$ may be due to competing deprotonation of $\mathbf{1 0}$ to the vinyl complex $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}=\mathrm{CH}_{2}\right) .{ }^{16}$

Phenethyl complex $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ (9) was isolable in at best 20% yield from the reaction of C_{6} $\mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Li}$ or $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{MgBr}$ with 1 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. It is perhaps surprising that 9 (or even 2-6, eq 1) is obtained at all, since $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is normally too reactive a solvent for RLi or RMgX additions. Methylidene 1 is not soluble in Grignard-inert solvents such as hydrocarbons or ethers. To avoid these problems, the alternative synthesis of 9 shown in eq 2 was devised. The readily available, benzene-soluble "methyl ester" $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)^{17}$ was treated with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{MgBr}$. The crystalline, yellow-organge acyl $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{COCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ was subsequently isolated in 80% yield. Reduction of this acyl with excess $\mathrm{BH}_{3} \cdot \mathrm{THF}^{14.18}$ gave alkyl 9 in 64% yield.

Alkyls 2-9 were characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR, and mass spectrometry. These data are summarized in Tables I and II.
(15) (a) The absolute configuration at rhenium is specified first and is assigned according to the Baird/Sloan modification of the Cahn-lngoldPrelog priority rules. ${ }^{15 \mathrm{~b}, \mathrm{c}}$ By this system, the $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ ligand is considered to be a pseudoatom of atomic number $5 \times 6=30$. We employ the following convention for converting planar representations of rhenium alkyls into three-dimensional structures:

Hence all alkyl complexes in this manuscript have an S configuration at rhenium. Note however that an olefin complex of the same relative configuration would be R, since $\eta^{2}-\mathrm{RR}^{\prime} \mathrm{C}=\mathrm{CH}^{\prime \prime} \mathrm{R}^{\prime \prime \prime}$ (12) $>\mathrm{NO}$ (7). The ligandbased element of chirality in the styrene and propylene complexes is designated R or S following the convention of Paiaro and Panunzi: ${ }^{\text {sd }}$ the complex is drawn in its metallocyclopropane resonance form and the Cahn-lngold-Prelog rules are applied to the "new" asymmetric carbon. We thank a reviewer and Dr. Kurt Loening (Chemical Abstracts Service) for their assistance with this point of nomenclature. (b) Stanley, K.; Baird, M. C. J. Am. Chem. Soc. 1975, 97, 6598. (c) Sloan, T. Top. Stereochem. 1981, 12, 1. (d) Paiaro, G.; Panunzi, A. J. Am. Chem. Soc. 1964, 86, 5148.
(16) The synthesis and some very unusual properties of this class of compounds (which react with rhenium alkylidene complexes) will be reported shortly: Hatton, W. G.; Gladysz, J. A. J. Am. Chem. Soc., submitted for publication.
(17) Merrifield, J. H.; Strouse, C. E.; Gladysz, J. A. Organometallics 1982, 1, 1204.
(18) Van Doorn, J. A.; Masters, C.; Volger, H. C. J. Organomet. Chem. 1976, 105, 245.

II. Regiochemistry of the Reaction of Alkyls $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ Re(NO) $\left(\mathbf{P P h}_{3}\right)(\mathbf{R})$ with $\mathbf{P h}_{3} \mathbf{C}^{+} \mathbf{P F}_{6}{ }^{-}$. Unbranched primary alkyls 2-4 were treated with 1.1 equiv of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$at $-78{ }^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. Proton NMR monitoring ($-70^{\circ} \mathrm{C}$) showed the immediate, quantitative, regiospecific formation of alkylidenes [$(\eta-$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CHCH}_{3}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}(\mathbf{1 0 k}),\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}-\right.$ $\left.(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}(11 \mathrm{k})$, and $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}-\right.$ (NO) $\left.\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)\right]^{+} \mathrm{PF}_{6}^{-}(\mathbf{1 2 k})$ (eq 3). When $10 \mathrm{k}-12 \mathrm{k}$ were warmed to $0-25^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, they diminished as ${ }^{1} \mathrm{H}$ NMR resonances ascribable to new alkylidene complexes (10t-12t) appeared. By analogy to structures established for benzylidene $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-1},{ }^{13 \mathrm{~b}}$ the two forms of $\mathbf{1 0 - 1 2}$ are assigned as geometric isomers which differ in substituent orientation about the $\mathrm{Re}=\mathrm{C}$ bond. The \mathbf{k} ("kinetic") isomers have the synclinal (sc) conformation I (Newman projection down the $\mathrm{C}=\mathrm{Re}$ bond) and the t ("thermodynamic") isomers have the less congested anticlinal (ac) conformation II. ${ }^{19}$

$\begin{array}{ll}2 & n=1 \\ 3 & n=2 \\ \underset{\sim}{3} & n=4\end{array}$

The equilibrium \mathbf{k} / \mathbf{t} ratios were measured by ${ }^{1} \mathrm{H}$ NMR and found to be $(90 \pm 2):(10 \pm 2)$ for $10 t / 10 k$ and $12 t / 12 k$ and (91 $\pm 2):(9 \pm 2)$ for $11 \mathrm{t} / 11 \mathrm{k}$. Recrystallized products were obtained in 75% (10), 78% (11), and 56% (12) yields. When these were dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}, \mathbf{t} / \mathbf{k}$ ratios were within a few percent of the equilibrium values.

The rate of isomerization of $\mathbf{1 0 k}$ to 10 t was measured at temperatures ranging from -15 to $+14^{\circ} \mathrm{C}$, as summarized in Table III. These data yielded the activation parameters $\Delta H^{\ddagger}=17.4$ $\pm 0.5 \mathrm{kcal} / \mathrm{mol}$ and $\Delta S^{\ddagger}=-7.3 \pm 2.0 \mathrm{eu}$.

A sample of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CD}_{2} \mathrm{CH}_{3}\right)\left(2-\alpha-d_{2}\right)$ was synthesized from $\mathrm{CH}_{3} \mathrm{Li}$ and $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\right.$ $\left.\left(=\mathrm{CD}_{2}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}\left(1-\alpha-d_{2}\right) .^{11,12 \mathrm{~b}}$ Reaction of 2- $\alpha-d_{2}$ with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$ gave exclusively $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CDCH}_{3}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}$ ($10-\alpha-d_{1}$). Thus hydride abstraction from 2 occurs regiospecifically and without intervening 1,2 -hydride migration. The triphenylmethane byproduct was isolated and found by mass spectrometry
(19) A synclinal alkylidene conformer is one in which the highest priority ${ }^{15}$ groups on $\operatorname{Re}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $\mathrm{C}($ alkyl $)$ define a $60 \pm 30^{\circ}$ torsion angle. An anticlinal conformer is one in which the highest priority groups define a 120 $\pm 30^{\circ}$ torsion angle. ldentical terminology can be used to designate olefin complex rotamers. See section E-5.6, p 24: Pure Appl. Chem. 1976, 45, 11.

Table I. Spectroscopic Data on Rhenium Alkyls $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{R})$

	1622	3.16 (m, 1 H)	4.93 (s, 5 H$)$		$\begin{aligned} & 4.92\left(\mathrm{~d}, J^{13} \mathrm{C}-{ }^{31} \mathrm{P}=\right. \\ & 3.7 \mathrm{~Hz}) \end{aligned}$	90.20	$\begin{gathered} \mathrm{CH}_{3}, 28.56 ; \mathrm{CH}_{2}, 56.11 ; \text { phenyl, } \\ 124.56,127.54,128.18(\mathrm{~d}, \\ \left.J_{13} \mathbf{C}^{-{ }^{31}} \mathrm{P}=9.4 \mathrm{~Hz}\right), 128.97 \\ 129.84,133.59(\mathrm{~d}, J=9.8 \mathrm{~Hz}) \\ 136.29(\mathrm{~d}, J=51.3 \mathrm{~Hz}), 146.21 \end{gathered}$
	1626	2.99 (m, 1 H)	4.97 (s, 5 H)	$\begin{aligned} & \mathrm{CH}_{3}(\mathrm{~d}, 3 \mathrm{H}), 1.40\left(\boldsymbol{J}^{1} \mathrm{H}^{1}{ }^{1} \mathbf{H}_{\alpha}=\right. \\ & 6.7 \mathrm{~Hz}) ; \mathrm{H}_{\beta}(\mathrm{dd}, 1 \mathrm{H}), 2.05 \\ & \left(J^{1} \mathbf{H}_{\beta^{-1}} \mathbf{H}_{\beta}=J^{1} \mathbf{H}_{\beta^{-1}} \mathbf{H}_{\alpha}=\right. \\ & 12.8 \mathrm{~Hz}) ; \mathrm{H}_{\beta}(\mathrm{dd}, 1 \mathrm{H}), 3.06 \\ & \left({ }^{1}{ }^{1} \mathbf{H}_{\beta^{\prime}}{ }^{1} \mathbf{H}_{\beta}=12.8 \mathrm{~Hz},\right. \\ & \left.J^{1} \mathbf{H}_{\beta^{\prime}}-^{1} \mathbf{H}_{\alpha}=3.0 \mathrm{~Hz}\right) ; \text { phenyl } \\ & \left(\mathrm{m}^{\prime} \mathrm{s}, 20 \mathrm{H}\right), 6.35 \text { and } 7.02-7.43 \end{aligned}$	$\begin{aligned} & 5.45\left(\mathrm{~d}, J^{13} \mathrm{C}-{ }^{31} \mathrm{p}=\right. \\ & 4.0 \mathrm{~Hz}) \end{aligned}$	89.93	$\begin{gathered} \mathrm{CH}_{3}, 31.39 ; \mathrm{CH}_{2}, 53.71 ; \text { phenyl, } \\ 124.68,127.54,128.36(\mathrm{~d}, \\ \left.J^{13} \mathrm{C}^{31} \mathrm{P}=8.8 \mathrm{~Hz}\right), 129.87, \\ 133.72(\mathrm{~d}, J=10.7 \mathrm{~Hz}), \\ 136.20(\mathrm{~d}, J=50.4 \mathrm{~Hz}), 145.88 \end{gathered}$

Table II. 16-eV Mass Spectra of Rhenium Alkyls $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{R})$

complex	ions, m / e for ${ }^{187} \mathrm{Re}$ (\% of base peak)			
	M^{+}	$\mathrm{M}^{+}-\mathrm{R}$	$\mathrm{PPh}_{3}{ }^{+}$	other
$\begin{aligned} & 2(\mathrm{R}= \\ & \left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \end{aligned}$	573 (100)	544 (18.9)	262 (46.8)	$545(24.4)^{\text {a }}$
				$467(11.0)^{\text {b }}$
				263 (41.2)
$\begin{aligned} & 3(\mathrm{R}= \\ & \left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) \end{aligned}$	587 (100)	544 (27.6)	262 (78.4)	545 (53.9) ${ }^{\text {a }}$
				$467(20.4)^{b}$
				263 (71.8)
$\begin{aligned} & 4(\mathrm{R}= \\ & \left.\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right) \end{aligned}$	615 (90.4)	544 (28.9)	262 (100)	$545(54.3)^{\text {a }}$
				467 (19.1) ${ }^{\text {b }}$
				263 (82.1)
$\begin{aligned} & 5(\mathrm{R}= \\ & \left.\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \end{aligned}$	601 (100)	544 (56.7)	262 (61.5)	$545(76.0)^{a}$
				$467(57.4)^{\text {b }}$
				399 (36.8)
				263 (83.3)
$\begin{aligned} & 6(\mathrm{R}= \\ & \left.\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) \end{aligned}$	615 (35.3)	544 (12.0)	262 (36.0)	$558(100)^{\text {c }}$
				263 (7.1)
$\begin{gathered} 8(\mathrm{R}= \\ \left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \end{gathered}$	587 (41.6)	544 (70.6)	262 (71.9)	$545(100)^{a}$
				$467(48.2)^{\text {b }}$
				263 (98.9)
$\begin{aligned} & 9(\mathrm{R}= \\ & \left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) \end{aligned}$	649 (44.6)	544 (14.9)	262 (58.4)	$558(100)^{\text {c }}$
				545 (47.3) ${ }^{\text {a }}$
				$467(31.5)^{\text {b }}$
				387 (16.4)
				263 (47.9)

${ }^{a}$ Tentatively assigned as $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{H})\right]^{+}$; intensity not corrected for $\mathrm{M}^{+}-\mathrm{R}(m / e 544)$ isotope peak. ${ }^{b}$ Assigned as $\mathrm{M}^{+}-\mathrm{R}-\mathrm{C}_{6} \mathrm{H}_{5}$ based upon spectra of $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{D}_{5}\right)_{3}$-labeled samples. ${ }^{6}$ Assigned as $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2}\right)\right]^{+}$.

Table III. Rate Constants for the $\mathrm{Re}=\mathrm{C}$ Bond Rotation $10 \mathrm{k} \rightarrow 10 \mathrm{t}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

	temp, $\pm 0.2^{\circ} \mathrm{C}$	$10^{4} k_{1},{ }^{a} \mathrm{~s}^{-1}$
entry	14.0	76.6 ± 7.0
2	9.0	42.1 ± 2.5
3	4.0	26.3 ± 0.9
4	-1.0	15.3 ± 1.5
5	-5.0	7.39 ± 0.20
6	-11.0	3.60 ± 0.30
7	-15.0	2.38 ± 0.24

a The forward rate constant, k_{1}, was obtained by plotting log
([10k $]_{\text {equil }}-[10 \mathrm{k}]_{\mathrm{t}}$) vs. time. The variable k_{-1} was eliminated
from the slope, $-0.4343\left(k_{1}+k_{-1}\right.$), by substituting k_{1} / K :
Capellos, C.; Bielski, B. H. J. "Kinetic Systems"; Wiley: New
York, 1972; Chapter 8 .
to be a $(96 \pm 1):(4 \pm 1) \mathrm{Ph}_{3} \mathrm{CD} / \mathrm{Ph}_{3} \mathrm{CH}$ mixture. The small amount of $\mathrm{Ph}_{3} \mathrm{CH}$ cannot be taken as evidence against regioselectivity, since similar quantities of $\mathrm{Ph}_{3} \mathrm{CH}$ are also formed in the reaction of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$with $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CD}_{3}\right){ }^{136}$ We believe that the bulk of the $\mathrm{Ph}_{3} \mathrm{CH}$ arises from adventitious H^{-} sources and/or impurities in the $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$.

A 50:50 mixture of $\mathbf{2}$ and $2-\alpha-d_{2}$ was treated with 0.20 equiv ($20 \mathrm{~mol} \%$) of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$at $-78^{\circ} \mathrm{C}$. The resulting triphenylmethane byproduct was isolated and found to be a (82 ± 2): (18 $\pm 2) \mathrm{Ph}_{3} \mathrm{CH} / \mathrm{Ph}_{3} \mathrm{CD}$ mixture (average of two runs). To ensure that this competition experiment gave a reasonably quantitative measure of the primary deuterium isotope effect, three controls were conducted. First, triphenylmethane was isolated from an identical, side-by-side reaction of $2-\alpha-d_{2}$ and $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}(0.20$ equiv). $\mathrm{A}(91 \pm 2):(9 \pm 2) \mathrm{Ph}_{3} \mathrm{CD} / \mathrm{Ph}_{3} \mathrm{CH}$ ratio was found (average of two runs). Second, 0.20 equiv of a $(88 \pm 1):(12 \pm$ 1) $\mathrm{Ph}_{3} \mathrm{CD} / \mathrm{Ph}_{3} \mathrm{CH}$ mixture was added to a $\mathbf{1 0 t} / \mathbf{1 0 k}$ thermodynamic mixture in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After 22 h , the triphenylmethane was recovered and found to be a $(87 \pm 1):(13 \pm 1) \mathrm{Ph}_{3} \mathrm{CD} / \mathrm{Ph}_{3} \mathrm{CH}$ mixture. Third, no detectable H/D exchange ($\langle 4 \%$) occurred between $10 \mathrm{t} / \mathbf{1 0 \mathrm { k }}$ and $\mathbf{2 - \alpha - d _ { 2 }}$ (each 0.022 M) over the course of 10 h at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. These observations establish the integrity of the $\mathrm{Ph}_{3} \mathrm{CD}$ and $2-\alpha-d_{2}$ labels in the competition experiment. Hence $k_{\mathrm{H}} / k_{\mathrm{D}}$ is in the range 2-4.

Reaction of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$with the isobutyl alkyl 5 (eq 4) was examined next. Proton NMR monitoring ($-70^{\circ} \mathrm{C}$) showed the immediate and quantitative formation of isobutylene complex $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}(13)$. A bench top reaction gave 13 as cream crystals in 70% yield. Byproduct $\mathrm{Ph}_{3} \mathrm{CH}$ was isolated from the reaction of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})$ $\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CD}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)\left(5-\alpha-d_{2}\right)$ with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}-$. Mass spectral analysis indicated $\mathrm{Ph}_{3} \mathrm{CD}$ to be present at natural abundance level. Thus $\mathbf{1 3}$ is formed via a regiospecific β-hydride abstraction.

$\stackrel{5}{\sim}$

$\stackrel{13}{\sim}$

Reaction of the neopentyl complex $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})$ $\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)(6)$ with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$was ${ }^{1} \mathrm{H}$ NMR monitored at $-70^{\circ} \mathrm{C}$. Extensive peak broadening was observed, but no alkylidene products could be detected. Triphenylmethane was detected in some reactions, but it was not consistently formed.

Reactions of the secondary rhenium alkyls with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$were investigated next. Reaction of diastereometrically pure ($S S$,$R R)-\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5}\right)((S S, R R)-7)$ with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}^{-}$gave (as assayed in situ) a diastereomerically pure styrene complex (eq 5). As will be rationalized in the Discussion, the structure of this β-hydride abstraction product was assigned as $(R R, S S)-\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]^{+} \mathrm{PF}_{6}-$ $((R R, S S)-14) .{ }^{15}$ Subsequent $\mathrm{CHCl}_{3} /$ ether recrystallization gave $(R R, S S)-14$ as yellow crystals in 78% yield.

Similarly, reaction of ($S R, R S$)-7 (eq 5) with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$gave exclusively the other styrene complex diastereomer ($R S, S R$)-14. A sample of $(R R, S S)-14$ was heated in $\mathrm{CD}_{3} \mathrm{CN}$ at $70-80^{\circ} \mathrm{C}$. After 24 h , a ca. 1:2:1 mixture of $(R R, S S)$-14/($R S, S R)$-14/ $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NCCD}_{3}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-20}$ had formed. Continued heating resulted in the complete disappearance of ($R R$,$S S$)-14, and after ca. 50 h only the $\mathrm{CD}_{3} \mathrm{CN}$ complex was present. Thus ($R S, S R$)-14 is the more stable styrene complex diastereomer.

Reaction of the isopropyl complex $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)$ $\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)(8)$ with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}^{-}$also gave β-hydride abstraction (eq 6). Proton NMR analysis of the crude reaction mixture showed a $(92 \pm 1):(8 \pm 1)$ mixture of diastereomeric propylene
(20) Merrifield, J. H.; Lin, G-Y.; Kiel, W. A.; Gladysz, J. A. J. Am. Chem. Soc., in press.
complexes which were assigned (as described in the Discussion) the structures $(R R, S S)-\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{C}=\right.\right.$ $\left.\left.\mathrm{CHCH}_{3}\right)\right]+\mathrm{PF}_{6}-\quad((R R, S S)-15)$ and $(R S, S R)-\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}-\right.$ $\left.(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{3}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}((R S, S R)-15)$, respectively. ${ }^{15}$ Byproduct $\mathrm{Ph}_{3} \mathrm{CH}$ was isolated from the reaction of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$ with $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CD}\left(\mathrm{CH}_{3}\right)_{3}\right)\left(8-\alpha-d_{1}\right)$. Mass spectral analysis showed $\mathrm{Ph}_{3} \mathrm{CD}$ was present at natural abundance level.

Diastereomerically pure ($R R, S S$)-15 was obtained by recrystallizing the eq 4 reaction mixture from $\mathrm{CHCl}_{3} /$ ether (yellow prisms, 72%). A sample of ($R R, S S$)- 15 was heated for 125 h at $75-80^{\circ} \mathrm{C}$ in $\mathrm{CH}_{3} \mathrm{CN}$. Proton NMR analysis of an aliquot of this sample indicated that a ca. 79:12:9 mixture of ($R S, S R$)-15/ $(R R, S S)-15 /\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NCCH}_{3}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}$had formed. Workup and CHCl_{3} /ether recrystallization gave a (95 $\pm 1):(5 \pm 1)(R S, S R)-\mathbf{1 5} /(R R, S S)-\mathbf{1 5}$ mixture. Thus ($R S$, , $S R$)-15 is the more stable propylene complex diastereomer.

Reaction of the β-phenethyl complex ($\eta-\mathrm{C}_{5} \mathrm{H}_{5}$) $\mathrm{Re}(\mathrm{NO})$ $\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ (9) with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}-\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}\right)$ was monitored by ${ }^{1} \mathrm{H}$ NMR at $-63^{\circ} \mathrm{C}$ (eq 7). The α-hydride abstraction product alkylidene $s c-\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\right.$ $\left.\left(=\mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}(\mathbf{1 6 k})$ formed in 63% yield. The β-hydride abstraction products, styrene complexes ($R R, S S$) 14 and $(R S, S R)-14$, were present in 18% yield each. Upon warming to room temperature, a new alkylidene geometric isomer (16t) formed as 16 k disappeared. Extensive decomposition of 16 t occurred over several hours at $25^{\circ} \mathrm{C}$.

Cationic alkylidene and olefin complexes $\mathbf{1 0 - 1 5}$ were characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and IR spectroscopy. These data are summarized in Table IV. The NMR spectral properties of the olefin complexes closely resemble those of related iron complexes. ${ }^{21}$

[^2]III. Origin of Diastereoselectivity in the Reactions of Alkyls $\left(\eta-\mathrm{C}_{5} \mathbf{H}_{5}\right) \operatorname{Re}(\mathbf{N O})\left(\mathrm{PPh}_{3}\right)(\mathrm{R})$ with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$. In most of the preceding reactions of alkyls $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{R})$ with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$, one of two possible products formed stereospecifically. Furthermore, the less stable diastereomer was often the kinetic product. In order to obtain substrates which were appropriately labeled to test the origins of this diastereoselectivity, we examined the reaction of ethylidene 10 with a series of nucleophiles.

Ethylidene 10 k was treated with $\mathrm{Li}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{BD}$ at $-78^{\circ} \mathrm{C}$. Ethyl complex $2-\alpha-d_{1}$ was subsequently isolated in 70% yield. The δ $2.10^{1} \mathrm{H}$ NMR resonance normally present in 2 (Table I) was not detected ($\leq 1 \%$ of normal intensity) in this material. As will be rationalized in the Discussion, the ($S R, R S$) configurations were assigned to this 2- $\alpha-d_{1}$ diastereomer.

(SS,RR)-7

(SS.RR)-1見

Reactions of $10 k$ with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{MgBr}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgBr}$, and PMe_{3} were similarly stereospecific, as assyed by ${ }^{1} \mathrm{H}$ NMR of the reaction mixture either in situ or prior to any recrystallizations. Adducts $(S S, R R)-\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{3}\right)((S S,-$ $R R)-17),(S S, R R)-7$, and $(S S, R R)-\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)-\right.$ $\left.\left(\mathrm{CH}\left({ }^{+} \mathrm{PMe}_{3}\right) \mathrm{CH}_{3}\right)\right] \mathrm{PF}_{6}{ }^{-}((S S, R R)-18)$ were obtained in 53%, 76%, and 70% yields, respectively (eq 8). Spectral properties of 17 are included in Table I, and those of 18 are given in the Experimental Section.

An identical series of reactions were attempted with the (90 $\pm 2):(10 \pm 2) \mathbf{1 0 t} / \mathbf{1 0 k}$ thermodynamic mixture. In each case, the major diastereomer formed was the opposite of the one obtained in eq 8. Reaction with $\mathrm{Li}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{BD}$ gave a (89 ± 2) : $(11$ $\pm 2)(S S, R R)-2-\alpha-d_{1} /(S R, R S)-2-\alpha-d_{1}$ mixture, as assayed by the relative areas of the two H_{α} NMR resonances. Addition of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{MgCl}$ gave a $(91 \pm 2):(9 \pm 2)(S R, R S)-17 /(S S, R R)-17$ mixture (84% yield), as assayed by the relative areas of the two $\mathrm{C}_{5} \mathrm{H}_{5}{ }^{1} \mathrm{H}$ NMR resonances. Similarly, PMe_{3} gave a $(90 \pm 2):(10$ $\pm 2)(S R, R S)-18 /(S S, R R)-18$ mixture (74% yield). However, no adduct was obtained when $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgBr}$ was added to the 10t/10k thermodynamic mixture.

A route to $10-\beta-d_{3}$ was sought in order that the two diastereomers of $8-\beta-d_{3}$ might be synthesized. Surprisingly, the β protons of a $10 \mathrm{t} / 10 \mathrm{k}$ equilibrium mixture exchanged with ace-tone- d_{6} without added catalyst (eq 9). Over the course of 4 days at room temperature, $81 \rightarrow 98 \%$ deuterium incorporation could be achieved. Reaction of a 81% labeled $10 \mathrm{t}-\beta-d_{3} / 10 \mathrm{k}-\beta-d_{3}$ thermodynamic mixture with $\mathrm{CH}_{3} \mathrm{MgBr}$ gave a $(91 \pm 2):(9 \pm$ 2) $(S S, R R)-8-\beta-d_{3} /(S R, R S)-8-\beta-d_{3}$ mixture (eq 9). Addition of $\mathrm{Li}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{BH}$ to a $>98 \%$ labeled $10 \mathrm{t}-\beta-d_{3} / \mathbf{1 0 k}-\beta-d_{3}$ mixture afforded $2-\beta-d_{3}$. Sequential treatment of $2-\beta-d_{3}$ with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$ $\left(-78{ }^{\circ} \mathrm{C}\right.$) and $\mathrm{CH}_{3} \mathrm{MgBr}$ gave diastereomerically pure ($S R$,$R S$) $8-\beta-d_{3}(\mathrm{eq} 9)$.

The stereochemistry of the reaction of $\mathbf{2}$ with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$was examined by using the $\alpha-d_{1}$-labeled substrates. Treatment of $(S R, R S)$-2- $\alpha-d_{1}$ with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}-$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ gave a (98 $\pm 2):(2 \pm 2) \mathbf{1 0 k}-\alpha-d_{0} / \mathbf{1 0 k}-\alpha-d_{1}$ mixture, as assayed by careful integration of the $\mathrm{C}_{5} \mathrm{H}_{5}$ and residual $\mathrm{Re}=\mathrm{CHCH}_{3}{ }^{1} \mathrm{H}$ NMR

resonances. Similarly, reaction of the $(89 \pm 2):(11 \pm 2)(S S,-$ $R R)-2-\alpha-d_{1} /(S R, R S)-2-\alpha-d_{1}$ mixture with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}^{-}$gave a (89 $\pm 2):(11 \pm 2) 10 \mathrm{k}-\alpha-d_{1} / 10 \mathrm{k}-\alpha-d_{0}$ mixture. These data indicate that the hydride (or deuteride) in the pro- $R \alpha$-position of 2 is preferentially abstracted.

The stereochemistry of the reaction of 8 with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$was examined using the $\beta-d_{3}$-labeled substrates. As shown in eq 10 , reaction of $>98 \%$ labeled, diastereomerically pure $(S R, R S)-\mathbf{8}-\beta-d_{3}$ with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}^{-}$gave the diastereomeric propylene complexes $(R R, S S)-15-d_{2}$ and ($R S, S R$)-15- d_{3}. Close examination of the ${ }^{1} \mathrm{H}$ NMR spectrum showed that the $\mathrm{C}=\mathrm{CH}_{2}$ resonances normally found for $(R R, S S)-15$ and the $-\mathrm{CH}_{3}$ resonance normally found for $(R S, S R)-15$ were absent. The $(70 \pm 2):(30 \pm 2)$ product ratio differed from the $(92 \pm 1):(8 \pm 1)$ ratio found in eq 6 .

Reaction of the 81% labeled $(91 \pm 2):(9 \pm 2)(S S, R R)-8-\beta-$ $d_{3} /(S R, R S)-8-\beta-d_{3}$ mixture with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$gave ($R R, S S$) $-[(\eta-$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCD}_{3}\right)\right]^{+} \mathrm{PF}_{6}-\left((R R, S S)-15-d_{3}\right)$ as the major product. This was accompanied by much smaller amounts of $(R S, S R)-\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{D}_{2} \mathrm{C}=\right.\right.$ $\left.\left.\mathrm{CHCH}_{3}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}\left((R S, S R)-15-d_{2}\right)$ and the products (from $\left.(S R, R S)-8-\beta-d_{3}\right)$ shown in eq 10. The total ratio of ($R R, S S$)$15 /(R S, S R)-15$ diastereomers was $(92 \pm 2):(8 \pm 2)$. After the contribution of eq 10 was subtracted, it was calculated that the primary products from $(S S, R R)-8-\beta-d_{3}-(R R, S S)-15-d_{3}$ and $(R S, S R)-15-d_{2}$-had formed in a $(94.5 \pm 2.5):(5.5 \pm 2.5)$ ratio (eq 11).

These data indicate that hydride (or deuteride) is preferentially abstracted from the pro- R methyl group of 8 . An isotope effect

[^3]$99.05 \mathrm{CH}_{3}, 24.42$; phenyl, 130.49 (d, $\left.J^{13} \mathrm{C}^{31} \mathrm{p}=10.9 \mathrm{~Hz}\right), 133.16(\mathrm{~d}, J=$ ${ }^{13} \mathrm{C}^{31} \mathrm{P}=134.9 \mathrm{~Hz}(\mathrm{~d}, J=10.7 \mathrm{~Hz})$, ipso carbon not observed

 $\sim 2.0 \mathrm{~Hz}$ is observable. ${ }^{g} \nu_{\mathrm{NO}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)=1735 \mathrm{~cm}^{-1}$. ${ }^{h}$ Labeling of monosubstituted olefin hydrogens:
$$
\underbrace{\mathrm{R}}_{\mathrm{H}_{\mathrm{CHR}}} \mathrm{C}=\mathrm{C}-\underbrace{\mathrm{H}_{\mathrm{cos}}}_{\mathrm{H}_{\text {Bans }}}
$$
 respectively. ${ }^{k}$ In CDCl_{3}

Figure 1. $\Delta \mathrm{G}$ and $\Delta \mathrm{G}^{*}$ for the interconversion of 10 k and 10 t at $25^{\circ} \mathrm{C}$.
can account for the shifts in product ratios upon going from eq 6 to eq 10 and 11 .

A sample of $(S S, R R)-\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{CH}-$ $\left.\left(\mathrm{CD}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5}\right)\left((S S, R R)-7-\beta-d_{3}\right)$ was synthesized by $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Li}$ attack upon $10 \mathrm{k}-\beta-d_{3}$. A $50: 50$ mixture of $(S S, R R)-7$ and ($S S, R R$)-$7-\beta-d_{3}$ was treated with 0.20 equiv ($20 \mathrm{~mol} \%$) of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$at $-78^{\circ} \mathrm{C}$. The resulting triphenylmethane byproduct was isolated and tound to be a $(86 \pm 2):(14 \pm 2) \mathrm{Ph}_{3} \mathrm{CH} / \mathrm{Ph}_{3} \mathrm{CD}$ mixture. Triphenylmethane was isolated from an identical, side-by-side control reaction of $(S S, R R)-7-\beta-d_{3}$ with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$. A (89 \pm $1):(11 \pm 1) \mathrm{Ph}_{3} \mathrm{D} / \mathrm{Ph}_{3} \mathrm{CH}$ ratio was found. Hence the primary kinetic isotope effect, $k_{\mathrm{H}} / k_{\mathrm{D}}$, is in the range 3-4.

Discussion

1. Primary Rhenium Alkyls $\left(\boldsymbol{\eta}-\mathrm{C}_{5} \mathbf{H}_{5}\right) \mathrm{Re}(\mathbf{N O})\left(\mathrm{PPh}_{3}\right)\left(\mathbf{C H}_{2} \mathbf{R}\right)$. Although primary alkyls 2-6 (eq 1) can be synthesized in good yields, some $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{3}\right)$ accompanies the formation of 5 and 6 . No other alkyl or alkylidene byproducts were found. This suggests that $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHLi}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CLi}$ can donate hydride to 1 . Hydride-transfer side reactions are commonly encountered in Grignard and alkyllithium additions. ${ }^{116.22}$ Since the "methyl ester" $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ (eq 2) is easily prepared from $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})\right]^{+} \mathrm{BF}_{4}^{-}$and $\mathrm{CH}_{3} \mathrm{ONa}{ }^{18}$ and subsequent RMgX addition gives acyls (η $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{COR})$ in high yields, ${ }^{23}$ we now favor the route shown in eq ii for the synthesis of many primary rhenium alkyls.
2. Alkylidene Complexes: Structure and Bonding. The bonding geometries and relative stabilities of benzylidenes $a c-[(\eta-$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}(\mathrm{t})$ and $s c-\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)-\right.$ $\left.\operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]^{+} \mathrm{PF}_{6}^{-}(\mathrm{k})$ have been established by X-ray crystallography and Hückel MO calculations. ${ }^{136}$ As shown in eq 3 , we assume that the bonding and relative stabilities of alkylidenes $10 \mathrm{t} / 10 \mathrm{k}, 11 \mathrm{t} / 11 \mathrm{k}$, and $12 \mathrm{t} / 12 \mathrm{k}$ are similar. The $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)^{+}$fragment HOMO is a d orbital which is bisected by the $\mathrm{Re}-\mathrm{P}$ bond and perpendicular to the $\mathrm{Re}-\mathrm{NO}$ bond. Thus 10-12 adopt conformations which maximize overlap of the alkylidene p orbital with this HOMO (see Figure 3).

The activation parameters for the ethylidene isomerization 10 k $\rightarrow 10 \mathrm{t}, \Delta H^{\ddagger}=17.4 \pm 0.5 \mathrm{kcal} / \mathrm{mol}$ and $\Delta S^{\ddagger}=-7.3 \pm 2.0 \mathrm{eu}$, are somewhat less than those for the corresponding benzylidene isomerization, $\Delta H^{\ddagger}=20.9 \pm 0.4 \mathrm{kcal} / \mathrm{mol}$ and $\Delta S^{\ddagger}=-3.8 \pm$ 0.2 eu. ${ }^{13 \mathrm{~b}}$ We attribute most of the ΔH^{\ddagger} decrease to a diminished steric barrier. The vinylidene $\mathrm{Re}=\mathrm{C}$ bond rotation $a c-[(\eta-$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5}\right)\right]^{+} \mathrm{SO}_{3} \mathrm{~F}^{-} \rightarrow s c-[(\eta-$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5}\right)\right]^{+} \mathrm{SO}_{3} \mathrm{~F}^{-}$was found to have $\Delta H^{\ddagger}=15.7 \pm 1.7 \mathrm{kcal} / \mathrm{mol}$ and $\Delta S^{\ddagger}=-9.8 \pm 5.5 \mathrm{eu}$.

The $10 \mathrm{k} \rightarrow 10 \mathrm{t}$ activation parameters yield $\Delta G^{\ddagger}{ }_{25^{\circ} \mathrm{C}}=19.6 \pm$ $1.1 \mathrm{kcal} / \mathrm{mol}$. Since the equilibrium concentrations of 10 k and $10 t$ are known, the free energy diagram in Figure 1 can be constructed. The equilibrium concentrations of 10 k and 11 k were slightly underestimated in earlier communications. ${ }^{12.24}$

Aliphatic $L_{n} \mathbf{M}=$ CHR complexes are a very rare class of compounds. The first ethylidene complex $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ta}\left(\mathrm{CH}_{3}\right)$ $\left(=\mathrm{CHCH}_{3}\right)$ was isolated by Sharp and Schrock. ${ }^{25}$ Electrophilic

[^4]| | closs 1 | | class 2 | | class 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | | | | 14 | $\begin{gathered} \mathrm{Re}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5} \\ 100 \% \end{gathered}$ |
| 3 | $\begin{gathered} \mathrm{Re}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \\ 100 \% \end{gathered}$ | 5 | | 9 | |

Figure 2. Summary of regiochemistry of hydride abstraction from (η $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{R})$ by $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$.
alkylidenes $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}\left(=\mathrm{CHCH}_{3}\right)$ and $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\right.$ $\left.\left(\mathrm{PPh}_{3}\right)(=\mathrm{CHR})\right]^{+} \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ have been spectroscopically characterized by Caulton ${ }^{26}$ and Brookhart and Husk. ${ }^{27}$
3. Stereochemistry of Nucleophilic Attack upon Ethylidenes 10k and 10 t . In order to mechanistically analyze the reactions of diastereomeric alkyls $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CHRR}^{\prime}\right)$ with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}^{-}$, the configuration at each chiral center must be established. We previously executed an X-ray crystal structure which demonstrated that nucleophiles preferentially attack both geometric isomers of benzylidene $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\right.$ $\left.\left(=\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]^{+} \mathrm{PF}_{6}-$ from a direction anti to the bulky PPh_{3}. The product of $\mathrm{CH}_{3} \mathrm{Li}$ attack upon t benzylidene $a c-\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}\right.$ (NO) $\left.\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]^{+} \mathrm{PF}_{6}-$ was thus established to be ($S S, R R$)-7. We now find that the same diastereomer of 7 is obtained by $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgBr}$ attack upon 10 k (eq 8). This can only be true if $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgBr}$ approaches anti to the PPh_{3} of $\mathbf{1 0 k}$. We make the key generalization that all nucleophiles (Nu) preferentially attack 10 k and 10 t anti to the PPh_{3} and assign configurations accordingly (eq 8,9). ${ }^{15}$ An important expected (and observed) consequence is that 10 k and 10 t afford opposite (η $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{CHRNu})$ diastereomers.

Reaction of ethylidene 10 k with nucleophiles gives $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ $\mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Nu}\right)$ adducts in $\geq 99: 1$ diastereomer ratios, whereas reaction of the corresponding \mathbf{k} benzylidene $s c$ -$\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]^{+} \mathrm{PF}_{6}^{-}$with identical nucleophiles gives $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{Nu}\right)$ adducts in (92-95):(8-5) diatereomer ratios. ${ }^{13 \mathrm{~b}}$ We are presently unable to account for the lower benzylidene stereoselectivity. Since reaction of nucleophiles with the $(90 \pm 2):(10 \pm 2) 10 t / 10 \mathrm{k}$ equilibrium mixture gives $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Nu}\right)$ adducts in ca. 90:10 diastereomer ratios, attack upon $\mathbf{1 0 t}$ is also likely $\gtrsim 98 \%$ stereoselective. We do not at present have a means of preparing 10 t free of 10 k .

Fortunately, the acidic β protons of 10^{16} are not abstracted by most carbon and hydride nucleophiles. Only in the 10t/ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgBr}$ reaction was the anticipated adduct $((S R, R S)-7)^{13 \mathrm{~b}}$ not detected. The high stereoselectivity with which new C_{α} chiral centers are formed foreshadows potentially broad utility for $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(=\mathrm{CHR})\right]^{+}$reagents in asymmetric organic synthesis. ${ }^{17}$
4. Regiochemistry of the Reactions of Rhenium Alkyls with $\mathbf{P h}_{3} \mathbf{C}^{+} \mathbf{P F}_{6}{ }^{-}$. With the configurations of all rhenium alkyls employed in this study established, we now address the regiochemistry of hydride abstraction. Our data are summarized in Figure 2. For each class of alkyl substrate, deuterium labeling was used to rigorously establish the site of hydride loss.

The potential β-hydride abstraction product of 2 , ethylene complex $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}$, has been independently synthesized. ${ }^{20}$ It is thermally stable and would have been easily detected. The potential α-hydride abstraction product

[^5]

Figure 3. A possible transition state for α-hydride abstraction from $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{R}\right)$ by $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$.
of 5, isobutylidene $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(=\mathrm{CHCH}-\right.$ $\left.\left.\left(\mathrm{CH}_{3}\right)_{2}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}$, has been independently synthesized. ${ }^{16}$ Although it rearranges to isobutylene complex 13 above $-10^{\circ} \mathrm{C}$, it would have been detected by ${ }^{1} \mathrm{H}$ NMR monitoring.

Several $\mathrm{L}_{n} \mathrm{MR} / \mathrm{Ph}_{3} \mathrm{C}^{+}$reactions discovered by other researchers are particularly relevant to Figure 2. First, Giering found that benzocyclobutene complex 19 (eq 12) gave benzocyclobutylidene 20 upon treatment with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-8}{ }^{-8 a}$ Deuterium labeling and an independent synthesis of the potential β-hydride abstraction product $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\left(\eta^{2} \text {-benzocyclobutene }\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}$rigorously showed eq 12 to be an α-hydride abstraction. This is the only previously demonstrated abstraction of an α-hydride from an alkyl ligand containing β-hydrides. Stucky obtained rhenium ethylene complex $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Re}\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}\right)\right]^{+} \mathrm{BF}_{4}{ }^{-}(\mathbf{2 1})$ in $\mathbf{4 1 \%}$ yield from the reaction of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ReCH}_{2} \mathrm{CH}_{3}$ with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{BF}_{4}{ }^{-}$(eq 13). ${ }^{6 \mathrm{C}}$ Although 21 appears to be a β-hydride abstraction product, no labeling experiments were reported. Finally, Cooper treated $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)\left(\mathrm{CD}_{3}\right)(22)$ with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-8 \mathrm{sd}}$ Product 24, derived from α deuteride abstraction, formed as outlined in eq 14. The same product formed when the 17 -electron species $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)\left(\mathrm{CD}_{3}\right)\right]^{+} \mathrm{PF}_{6}^{-}(23)$ was treated with $\mathrm{Ph}_{3} \mathrm{C}$ This indicates that electron transfer is the initial step of the reaction of 22 with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$.

5. Stereochemistry of the Reactions of Rhenium Alkyls with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$. Stereochemical data enable geometric constraints to be placed upon transition states. We now attempt to interpret the diastereoselectivity often encountered in the preceding reactions of rhenium alkyls with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$.

The exclusive formation of the less stable geometric isomer 10 k upon reaction of ethyl 2 with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$suggests that only one of the two diastereotopic α-hydrides is abstracted. Accordingly,
reactions of the two diastereomers of $2-\alpha-d_{1}$ with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$show that the pro- $R \alpha$-hydride is essentially exclusively abstracted.

Two reactions can be combined to create the stereochemical cycle shown in eq 15. As determined above, deuteride attacks I (10k) anti to the PPh_{3}. Three rotamers of product ($S R$,$R S)-2-\alpha-d_{1}$ exist. In order to convert $(S R, R S)-2-\alpha-d_{1}$ to kinetic product $10 \mathrm{k}, \mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$must abstract deuteride from a direction anti to PPh_{3}. Since III is the only rotamer which has deuteride anti to PPh_{3}, it (or a skewed variant) must be the one which reacts with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$.

Identical conclusions were reached regarding interconversions of benzyl $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, benzylidenes $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}$, and their α-deuterated homologues. ${ }^{136}$ Since III has the methyl group situtated between the two largest ligands PPh_{3} and $\mathrm{C}_{5} \mathrm{H}_{5}$, it is likely the least stable ($S R, R S$)-2- $\alpha-d_{1}$ rotamer. ${ }^{13 \mathrm{~b}}$ We are at present unable to account for its greater reactivity.

We assert that the abstraction of hydride anti to PPh_{3} should also be favored on electronic grounds. In this orientation, the rhenium fragment HOMO is able to anchimerically assist the departure of hydride, as shown in Figure 3. The -R and -H substituents move toward their new energy minima, and $d-p \pi$ bonding is maximized in the transition state. We have previously noted the close correspondence of Figure 3 with the second step of the E1cB elimination mechanism. ${ }^{13 \mathrm{~b}}$

The reactions shown in eq 5 entail the stereospecific conversion of a center of chirality $\left(\mathrm{C}_{\alpha}\right)$ to a new element of stereoisomerism (styrene si or $r e$ face coordination). ${ }^{15}$ Abstraction of β-hydrides from metal alkyls by $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$has been shown to occur antiperiplanar to the $\mathrm{M}-\mathrm{C}_{\alpha}$ bond. ${ }^{28-30}$ Theoretical studies support these experimental results. ${ }^{11 \mathrm{~b}}$ Product stereochemistry in eq 5 has been assigned accordingly. The formation of diastereomers opposite of the ones observed in eq 5 would constitute an inversion of configuration at C_{α}.

We assert that the rhenium fragment HOMO should also anchimerically assist the departure of β-hydrides and suggest the transition states for styrene complex formation shown in Figure 4. ${ }^{31}$ Product rotamers with the geometries $\mathrm{V} \rightleftharpoons \mathrm{VI}$ and VIII \rightleftharpoons IX are expected, since these maximize overlap of the rhenium HOMO with the empty olefin π^{*} orbital. Accordingly, the X-ray crystal structure of the formaldehyde complex $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}\right.$ (NO) $\left.\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\mathrm{H}_{2} \mathrm{C}=\mathrm{O}\right)\right]^{+} \mathrm{PF}_{6}-$ shows that the $\mathrm{Re}-\mathrm{C}=\mathrm{O}$ plane virtually eclipses the $\operatorname{Re}-\mathrm{PPh}_{3}$ bond ($\angle 15^{\circ}$). The bulkier $\mathrm{H}_{2} \mathrm{C}=$ end of $\mathrm{H}_{2} \mathrm{C}=\mathrm{O}$ is anti to the $\mathrm{PPh}_{3} .{ }^{32}$

The more stable $\mathrm{H}_{2} \mathrm{C}=$ CHR complex rotamers would be expected to have their bulkier $\mathrm{RHC}=$ termini anti to the PPh_{3}, as in VI and IX in Figure 4. Hence transition states IV and VII lead to the less stable rotamers. We have not yet been able to observe discrete rotamers of $\mathbf{1 4}$ or any related olefin complex. Since olefin complex diastereomer interconverion (eq 5,6) is relatively facile ($70-80^{\circ} \mathrm{C}$), we believe that rotamer intercon-

[^6]

Figure 4. Possible transition states for the formation of styrene complexes 14.
version should be rapid at room temperature. Typical ΔG^{*} for rotation about metal-olefin bonds are $8.0 \mathrm{kcal} / \mathrm{mol}$ for $[(\eta-$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{P}\left(\mathrm{OPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}\right)\right]^{+} \mathrm{BF}_{4}{ }^{-33} 10 \mathrm{kcal} / \mathrm{mol}$ for $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-33}$ and $12.8 \mathrm{kcal} / \mathrm{mol}$ for $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{SnPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}\right) .{ }^{34}$

Both styrene complex rotamers VI and IX have their $=\mathrm{CHC}_{6} \mathrm{H}_{5}$ termini anti to the PPh_{3}. However, in the former the phenyl ring points toward the medium sized $\mathrm{C}_{5} \mathrm{H}_{5}$ ligand, whereas in the latter it points toward the small NO ligand. We propose that this difference accounts for the greater thermodynamic stability of styrene complex diastereomer ($R S, S R$)-14.31

An alternative to transition state IV (or VII) would utilize the d orbital lobe syn to PPh_{3} and an eclipsed Re-C rotamer $\left(\mathrm{CH}_{3}\right.$ syn to PPh_{3}). This would afford the more stable olefin complex rotamer directly. However, then $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$would have to approach syn to the bulky PPh_{3}. We have never observed an attacking reagent to preferentially approach syn to the $\mathrm{PPh}_{3}{ }^{136}, 16.23$

The predominant formation of the less stable propylene complex diastereomer in eq 6 suggests that $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}-$ preferentially abstracts hydride from one of the two diastereotopic methyl groups of 8 . The diastereomeric $8-\beta-d_{3}$ substrates in eq 10 and 11 show that the pro- R methyl group is more reactive. The same reasoning used to assign product structures in eq 5 predicts that β-hydride abstraction from $(S R, R S)-8-\beta-d_{3}$ (eq 10) will give $(R R, S S)-15-d_{2}$, whereas β-deuteride abstraction from $(S R, R S)-8-\beta-d_{3}$ will give ($R S, S R$)-15- d_{3}. Assignments are similarly made for eq 11 and then for the unlabeled propylene complexes in eq 6 . We rationalize the relative diastereomer stabilities in the same manner as was done for the styrene complexes.

Analysis of eq 11 in terms of a Figure 4 mechanism is given in eq 16. Rotamer X yields the predominant kinetic product, whereas sterically more congested XI leads to the minor kinetic product. Rotamer XIII is unreactive, since the rhenium fragment HOMO cannot efficiently anchimerically assist hydride departure. The product isotope effects in eq 6,10 , and 11 are reasonably close to the product isotope effect of 2.5 observed by Baird in the reaction of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{CHDCHDC}_{6} \mathrm{H}_{5}\right)$ with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}-$ and the kinetic isotope effect, $k_{\mathrm{H}} / k_{\mathrm{D}}=3.7$, observed by Traylor in the reactions of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SnCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Sn}$ $\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CHDCH}_{3}$ with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{BF}_{4}{ }^{-28.29}$ We are unaware of any nonenzymatic process which discriminates between diastereotopic
(33) Reger, D. L.; Coleman, C. J. Inorg. Chem. 1979, 18, 3270.
(34) Faller, J. W.; Johnson, B. V.; Schaeffer, C. D., Jr. J. Am. Chem. Soc. 1976, 98,1395 . See also: Mann, B. E. In "Comprehensive Organometallic Chemistry"; Wilkinson, S., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: New York, 1982; Vol. 3, pp 105-108.
gem-dimethyl groups as efficiently as eq 6.

(RR.SS) $-15-d_{3}$
(RS,SR)- $15-d_{2}$
6. Mechanistic Basis for the Regiochemistry of Hydride Abstraction. There are two limiting modes of hydride transfer from $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{R})$ alkyls to $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$: concerted or via an intermediate electron-transfer step to give radical cation $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{R})\right]^{+} \cdot \mathrm{PF}_{6}{ }^{-}$and $\mathrm{Ph}_{3} \mathrm{C}$. Although we have depicted the former mechanism in Figure 3, the latter mechanism would, as required by the deuterium labeling experiments, have a similar gross geometry. Furthermore, the rhenium fragment HOMO in $\left[\left(\eta \sim \mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{R})\right]^{+}$. would be the same as in the precursor alkyl. Similarly, there is no compelling reason to alter the β-hydride abstraction transition-state geometries in Figure 4 as a result of an initial electron-transfer step.
The structural parameters which influence hydride abstraction regiochemistry can be summarized from Figure 2 as follows. Unbranched aliphatic alkyls (class 1) give exclusively α-hydride abstraction. However, when C_{β} is substituted such that an incipient carbonium ion would be stabilized (class 2), β-hydride abstraction can compete (9) or dominate (5). Secondary rhenium alkyls (class 3) give exclusively β-hydride abstraction. In these cases, approach of $\mathrm{Ph}_{3} \mathrm{C}^{+}$or $\mathrm{Ph}_{3} \mathrm{C}$. to H_{α} would be more hindered. No well-defined hydride abstraction products are obtained from the congested neopentyl alkyl $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{C}-\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{3}\right)(6)$.
The regiochemistry of hydride abstraction can potentially be influenced by thermodynamic factors. For isobutyl complex 5, we know that the kinetic hydride abstraction product 13 is also the thermodynamic product. ${ }^{16}$ However, we do not know the relative stabilities of, for instance, ethylidene $\mathbf{1 0}$ and the corresponding ethylene complex. Several examples of 1,2 -hydrogen shifts which convert cationic alkylidene complexes ($\mathrm{L}_{n} \mathrm{M}^{+}=\mathrm{C}$ $\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{~L}_{n} \mathrm{M}^{+}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$) to cationic olefin complexes have recently been found. ${ }^{16,27.35}$ However, it should be kept in mind that the kinetic products in Figures 3 and 4 are not the thermodynamically favored alkylidene complex isomers or olefin complex rotamers. Some interesting relevant equilibria have recently been reported by Schrock. Neopentyl ethylene complex $\mathrm{Ta}\left(\mathrm{CH}_{2} \mathrm{C}\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{3}\right)\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}\right)(\mathrm{Cl})_{2}\left(\mathrm{PMe}_{3}\right)_{2}$ and neopentylidene ethyl complex $\mathrm{Ta}\left(=\mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)(\mathrm{Cl})_{2}\left(\mathrm{PMe}_{3}\right)_{2}$ were found to exist as a $1: 1$ tautomeric mixture. Hence in this system, the thermodynamics of α-hydride elimination from neopentyl and β-hydride elimination from ethyl are approximately equal. ${ }^{76}$ Remarkably, a living ethylene polymerization catalyst, Ta-

[^7]$\left(=\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{n} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)(\mathrm{H})(\mathrm{I})_{2}\left(\mathrm{PMe}_{3}\right)_{2}$, has been shown to rest in an alkylidene hydride state. ${ }^{8 c}$ This suggests, but does not prove, that α-hydride elimination from the precursor alkyl is thermodynamically preferred over β-hydride elimination.

Previous studies of $\mathrm{L}_{n} \mathrm{MR} / \mathrm{Ph}_{3} \mathrm{C}^{+} \beta$-hydride abstractions have not considered in detail the possibility of initial electron transfer. ${ }^{28,29}$ However, the observation of a substantial kinetic deuterium isotope effect in Traylor's $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SnCH}\left(\mathrm{CH}_{3}\right)$ $\mathrm{CH}_{2} \mathrm{CH}_{3} / \mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$study ${ }^{28}$ does, as emphasized by Kochi, ${ }^{36}$ exclude electron transfer as an initial and rate determining step. In view of the $k_{\mathrm{H}} / k_{\mathrm{D}}$ of 3-4 from the $(S S, R R)-7 /(S S, R R)-7-$ $\beta-d_{3} / \mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$competition experiment, the same conclusion may be drawn for β-hydride abstraction from $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})$ $\left(\mathrm{PPh}_{3}\right)(\mathrm{R})$ alkyls. However, the possibility of an initial, preequilibrium electron transfer remains. In important related work, Ashby has obtained compelling evidence that Grignard reagents transfer β-hydrides to dimesityl ketone via a tight, solvent-caged radical pair. ${ }^{37}$ Similar reactivity was shown by other ketones with low reduction potentials ($<-2.0 \mathrm{~V}$).

The elegant studies of Cooper, ${ }^{\gamma \text { e.8d }}$ summarized in eq 14 , provide direct evidence that $\mathrm{L}_{n} \mathrm{MR} / \mathrm{Ph}_{3} \mathrm{C}^{+} \alpha$-hydride abstractions can proceed via initial electron transfer. The ability to trap and independently synthesize radical cations such as 23, and convert them to α-hydrogen abstraction products with $\mathrm{Ph}_{3} \mathrm{C}$-, excludes nearly all other mechanistic possibilities. Although we have obtained preliminary NMR and ESR evidence for the presence of radical species during $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{R}) / \mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$ reactions, we have so far been unable to synthesize authentic samples of $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{R})\right]^{+}$. radical cations. ${ }^{38}$ Since related radical cations $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{L})\left(\mathrm{L}^{\prime}\right)(\mathrm{R})\right]^{+} \cdot$ have been generated, ${ }^{39}$ we are confident that this difficulty will eventually be overcome. However, the $k_{\mathrm{H}} / k_{\mathrm{D}}$ of 2-4 from the $2 / 2-\alpha-d_{2} /$ $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$competition experiments excludes electron transfer as an initial and rate-determining step in our α-hydride abstractions.

In attempting to rationalize why regiospecific β-hydride ab straction is observed in nearly all other $\mathrm{L}_{n} \mathrm{MR} / \mathrm{Ph}_{3} \mathrm{C}^{+}$reactions, we initially speculated that $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{R})$ alkyls might be more easily oxidized than first-row counterparts such as $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})(\mathrm{L})(\mathrm{R})\left(\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{CO}\right)^{40}$ and that prior electron transfer might be uniquely associated with α-hydrogen loss. Equation 12 would be an understandable exception in that the β-hydride abstraction transition state would have considerable benzocyclobutene-like character. Alkyl $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}-$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, in which β-hydride abstraction would similarly be electronically unfavorable, has been reported not to react with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$at all. ${ }^{66}$ Since class 2 substrates in Figure 2 would have stabilized incipient β-carbonium ions, two-electron β-hydride abstraction would be able to compete with α-hydride abstraction. Steric factors would then be invoked to explain β-hydride abstraction from class 3 substrates. While this rationale accounts for all results obtained to date, we believe that it is premature to discount the possibility of prior electron transfer in β-hydride abstractions. The demanding experiments required to definitively address these points are being pursued in a coordinated effort in our Utah laboratories ${ }^{2}$ and Professor John Cooper's laboratory at Harvard.

Conclusion

This study has mapped the structural features which control the regiochemistry of hydride abstraction by $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}^{-}$from alkyls $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{R})$. Accurate predictions can now be made regarding the reactivity of yet unsynthesized rhenium
(36) Klingler, R. J.; Mochida, K.; Kochi, J. K. J. Am. Chem. Soc. 1979, 101, 6626.
(37) Ashby, E. C.; Goel, A. B. J. Am. Chem. Soc. 1981, 103, 4983
(38) Kiel, W. A.; Wong, A.; Bodner, G., unpublished results.
(39) Magnuson, R. H.; Zulu, S.; T'sai, W.-M.; Giering, W. P. J. Am. Chem. Soc. 1980, 102, 6887 . See also: Treichel, P. M.; Molzahn, D. C.; Wagner, K. P. J. Organomet. Chem. 1979, 174, 191
(40) For instance, $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{CO})_{3}$ is easier to oxidize than $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ $\mathrm{Mn}(\mathrm{CO})_{3}$: Denisovich, L. 1.; Zakarin, N. V.; Gubin, S. P.; Ginzburg, A. G. J. Organomet. Chem. 1975, 101, C43.
alkyls. Detailed transition-state models for α - and β-hydride abstraction have been proposed.

This study has also provided additional examples of the striking ability of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)$ systems to paticipate in stereospecific and/or highly stereoselective reactions. The rhenium chirality is efficiently transferred to new, ligand-based centers or elements of chirality. Since these complexes are now readily available in optically active form, ${ }^{17}$ important applications in asymmetric synthesis will soon be forthcoming.

Experimental Section

General procedures employed for this study were identical with those given in a previous paper. ${ }^{13 \mathrm{~b}}$
Starting Marterials. Alkyls $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{3}\right),{ }^{14}(\mathrm{SS},-$ $R R$)-7, and (SR,RS)-7, ${ }^{12}$ and ester $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)^{17}$ were prepared as previously described. $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$was purchased from Aldrich and Columbia Organic and was stored under N_{2} in the refrigerator. Over the course of this study the quality of the $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}^{-}$varied considerably. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / benzene or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ether under N_{2} was found to give pure $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$($50-60 \%$ recovery). ${ }^{41}$ Reagents $\mathrm{CH}_{3} \mathrm{MgBr}$ (3 M in ether), $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}$ (3 M in ether), $\mathrm{BH}_{3} \cdot$ THF (1 M in THF), and NaBD_{4} were purchased from Aldrich. Alkyls $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Li}\left(1.3 \mathrm{M}\right.$ in hexane) and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{MgCl}(1.8$ M in THF) were purchased from Alfa. Alkyls $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHLi}(1.4 \mathrm{M}$ in pentane) and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CLi}(1.9 \mathrm{M}$ in pentane) were purchased from Orgmet, Inc. All Grignard and organolithium reagents were used without standardization. PMe_{3} was obtained from Strem Chemicals and used without purification.

Preparation of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathbf{R e}(\mathbf{N O})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)(2)$. To a $-78^{\circ} \mathrm{C}$ solution of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{3}\right)(0.504 \mathrm{~g}, 0.0903 \mathrm{mmol})$ in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $0.393 \mathrm{~g}(0.988 \mathrm{mmol})$ of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$. The resulting yellow solution was stirred for 30 min at $-78^{\circ} \mathrm{C}$, and then 1.8 mL of $\mathrm{CH}_{3} \mathrm{Li}$ (1.0 M in ether) was added dropwise. After 15 min , the dark orange solution was allowed to warm to room temperature. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed by rotary evaporation, and the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /benzene and filtered through silica gel. The orange filtrate was rotovapped to dryness and the residue recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes. This gave $0.397 \mathrm{~g}(0.694 \mathrm{mmol}, 77 \%)$ of 2 as orange flakes, $\mathrm{mp} 220^{\circ} \mathrm{C}$ dec. Spectroscopic data: Tables I and II. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{25}$ NOPRe: $\mathrm{C}, 52.44 ; \mathrm{H}, 4.40 ; \mathrm{N}, 2.44 ; \mathrm{P}, 5.41$. Found: C, 52.19; H, 4.41; N, 2.30; P, 5.19.

Preparation of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ (3). To a -78 ${ }^{\circ} \mathrm{C}$ solution of $\left(\eta-\mathrm{C}_{5} \mathrm{kH}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{3}\right)(0.355 \mathrm{~g}, 0.636 \mathrm{mmol})$ in 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $0.296 \mathrm{~g}(0.763 \mathrm{mmol})$ of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}^{-}$. The resulting yellow solution was stirred for 20 min at $-78^{\circ} \mathrm{C}$, and 0.850 mL of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}$ (3 M in ether) was then added dropwise. After 10 min, an oil pump vacuum was applied and the solvents were removed as the orange solution was allowed to warm to room temperature. The residue was extracted with benzene and filtered through a $2-\mathrm{in}$. silica gel plug. The benzene was removed by rotary evaporation, and the resulting orange oil was chromatographed on a silica gel column with $1: 1$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes. The orange band was collected and gave 0.306 g ($0.522 \mathrm{mmol}, 82 \%$) of 3 as an orange powder, mp $184-185^{\circ} \mathrm{C}$ dec. Spectroscopic data: Tables I and II.

Preparation of ($\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{H}_{5}$) $\mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ (4). To a $-78{ }^{\circ} \mathrm{C}$ solution of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{3}\right)(0.300 \mathrm{~g}, 0.537$ mmol) in 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 0.250 g (0.644 mmol) of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}^{-}$. The resulting yellow solution was stirred for 20 min at -78 ${ }^{\circ} \mathrm{C}$, and then 0.490 mL of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Li}$ (1.3 M in hexanes) was added dropwise. After 15 min , the orange solution was allowed to warm to room temperature. The solvents were removed under oil pump vacuum, and the residue was extracted with benzene. The extracts were filtered through a $2-\mathrm{in}$, silica gel plug, and the benzene was removed by rotary evaporation. The resulting orange oil was taken up in hexanes and stored in a freezer overnight. Orange crystals of 4 formed and were isolated by filtration ($0.231 \mathrm{~g}, 0.376 \mathrm{mmol}, 70 \% ; \mathrm{mp} 135-137^{\circ} \mathrm{C}$). Spectroscopic data: Tables I and II.

Preparation of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$ (5). To 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ was added $0.239 \mathrm{~g}(0.340 \mathrm{mmol})$ of isolated $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CH}_{2}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}(1){ }^{13}$ Then 0.490 mL of $(\mathrm{C}-$ $\left.\mathrm{H}_{3}\right)_{2} \mathrm{CHLi}(1.4 \mathrm{M}$ in pentane) was added dropwise. The reaction mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$, during which time it turned orange. Analysis by silica gel TLC showed spots corresponding to both ($\eta-$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{3}\right)$ and the new alkyl 5. The reaction was allowed to warm to room temperature, whereupon the solvents were removed under oil pump vacuum. The residue was extracted with
(41) Patton, A. T.; Strouse, C. E.; Knobler, C. B.; Gladysz, J. A. J. Am. Chem. Soc., in press.
benzene and filtered through a 2 -in. silica gel plug. The benzene was removed by rotary evaporation, and the resulting orange oil was chromatographed on a silica gel column with $3: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes. The first orange fraction was collected and gave $0.107 \mathrm{~g}(0.178 \mathrm{mmol}, 52 \%)$ of 5 as an orange powder. Alkyl 5 was subsequently recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes; $\mathrm{mp} 222-225^{\circ} \mathrm{C}$ dec. Spectroscopic data: Tables I and II.

Preparation of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$ (6). To 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ was added $0.213 \mathrm{~g}(0.303 \mathrm{mmol})$ of isolated [$(\eta-$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CH}_{2}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}(1) .{ }^{13}$ Then 0.240 mL of $\left(\mathrm{CH}_{3}\right)_{3}-$ CLi (1.9 M in pentane) was added dropwise. The reaction mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$, during which time it turned bright orange. Analysis by silica gel TLC ($3: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes) showed spots corresponding to both $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{3}\right)\left(R_{f} 0.31\right)$ and the new alkyl $6\left(R_{f} 0.41\right)$. The reaction mixture was allowed to warm to room temperature, whereupon the solvents were removed under oil pump vacuum. The residue was extracted with benzene and filtered through a 2 -in. silica gel plug. The benzene was removed by rotary evaporation, and the resulting oil was chromatographed on a silica gel column with 3:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes. The first orange fraction was collected and gave $0.093 \mathrm{~g}(0.151 \mathrm{mmol}, 50 \%)$ of 6 as an orange powder. Alkyl 6 was subsequently recrystallized from hexanes; $\mathrm{mp} 187-190^{\circ} \mathrm{C}$. Spectroscopic data: Tables I and II.

Preparation of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$ (8). A solution of $0.102 \mathrm{~g}(0.142 \mathrm{mmol})$ of $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CHCH}_{3}\right)\right]^{+} \mathrm{PF}_{6}^{-}$ (10; see synthesis below) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $-78^{\circ} \mathrm{C}$, and 0.400 mL of $\mathrm{CH}_{3} \mathrm{Li}(1.4 \mathrm{M}$ in THF) was added dropwise. Alternatively, $\mathrm{CH}_{3} \mathrm{MgBr}$ was used. The resulting orange solution was stirred for 20 \min at $-78^{\circ} \mathrm{C}$. The solvents were then removed under oil pump vacuum while the reaction was allowed to warm. The resulting orange residue was extracted with benzene and filtered through a 2 -in. silica gel plug. The benzene was removed by rotary evaporation to give an orange oily solid which was dissolved in hexanes and stored in a freezer overnight. This gave $0.041 \mathrm{~g}(0.070 \mathrm{mmol})$ of 8 as orange-red crystals, $\mathrm{mp} \mathrm{175-178}$ ${ }^{\circ} \mathrm{C}$. Spectroscopic data: Tables I and II.

Preparation of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathbf{N O})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{COCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$. To a $25^{\circ} \mathrm{C}$ solution of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)(0.128 \mathrm{~g}, 0.212 \mathrm{mmol})$ in 20 mL of benzene was added dropwise 0.180 mL of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{MgCl}(1.8$ M in THF). After 15 min , the solution had turned from bright yellow to orange. Solvents were then removed under oil pump vacuum. The residue was taken up in acetone and filtered through a 3-in. silica gel plug. Acetone was removed from the resulting yellow solution by rotary evaporation. The residue was taken up in benzene and crystallized by subsequent diffusion addition of hexane. Thus obtained were bright yellow-orange needles ($0.112 \mathrm{~g}, 0.169 \mathrm{mmol}, 80 \%$) of ($\eta-\mathrm{C}_{5} \mathrm{H}_{5}$) Re(NO) $\left(\mathrm{PPh}_{3}\right)\left(\mathrm{COCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right): \mathrm{mp} 223-226{ }^{\circ} \mathrm{C} \mathrm{dec}$; IR $\left(\mathrm{cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $\nu_{\mathrm{N} \equiv 0} 1647(\mathrm{~s}), \nu_{\mathrm{C}}=01555(\mathrm{~m}) ;{ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{CDCl}_{3}$) $7.56-7.05(\mathrm{~m} \mathrm{~s}, 20$ H), $5.03(\mathrm{~s}, 5 \mathrm{H}), 4.15\left(\mathrm{~d}, J_{\mathrm{H}^{-}{ }^{-} \mathrm{H}^{\prime}}=12.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.18\left(\mathrm{~d}, J_{\mathrm{H}^{\prime}-1 \mathrm{H}}=12.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}$).

Preparation of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathbf{N O})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ (9). A. To a $25^{\circ} \mathrm{C}$ solution of $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{COCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)(0.075 \mathrm{~g}$, 0.113 mmol) in 20 mL of THF was added 3.0 mL of $\mathrm{BH}_{3} \cdot \mathrm{THF}$ (1 M in THF). The solution was refluxed for 4.5 h , during which time the color changed from yellow to orange. The THF was removed by rotary evaporation, and the residue was extracted with benzene and filtered through a 2 -in. silica gel plug. The benzene was removed, and the remaining orange solid was chromatographed on a silica gel column in $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes. The orange band was collected and gave 0.047 g ($0.072 \mathrm{mmol}, 64 \%$) of 9 as an orange powder, $\mathrm{mp} 222-224^{\circ} \mathrm{C}$ dec. Spectroscopic data: Tables I and II.
B. To 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ was added $0.200 \mathrm{~g}(0.285 \mathrm{mmol})$ of isolated $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CH}_{2}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}(1) .{ }^{13}$ Then 0.398 mL of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{MgCl}$ (1.8 M in THF) was added dropwise. After 15 min, the reaction mixture was allowed to warm to room temperature. Solvents were removed under oil pump vacuum, and the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /benzene and filtered through a silica gel plug. Workup as in A gave 0.037 g ($0.057 \mathrm{mmol}, 20 \%$) of 9.

Generation of sc-Alkylidenes $10 \mathrm{k}, 11 \mathrm{k}$, and $\mathbf{1 2 k}$. For a typical spectroscopic scale experiment, 0.035 mmol of $2-4$ was dissolved in 0.350 mL of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ in a septum-capped NMR tube. The tube was cooled to -78 ${ }^{\circ} \mathrm{C}$, and 1.1 equiv of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}^{-}$in 0.200 mL of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was slowly injected. The tube was shaken and quickly transferred to a $-73^{\circ} \mathrm{C}$ NMR probe, and the data compiled in Table I were recorded.

To obtain the isomerization rates in Table I1l, 10k was generated at the temperature of the rate measurement. The disappearance of $\mathbf{1 0 k}$ and the appearance of 10 t were monitored by integration of the $\mathrm{CH}_{3}{ }^{1} \mathrm{H}$ NMR resonances.

Preparative scale syntheses of $\mathbf{1 0 k} \mathbf{- 1 2 k}$ were effected as described in the following experimentals. In each case, solutions were stirred for at least 20 min at $-78^{\circ} \mathrm{C}$ before reaction.

Preparation of $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CHCH}_{3}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}(\mathbf{1 0 t} / \mathbf{1 0 k}$ Equilibrium Mixture). To a $-78^{\circ} \mathrm{C}$ solution of $2(0.314 \mathrm{~g}, 0.549 \mathrm{mmol})$ in 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $0.234 \mathrm{~g}(0.604 \mathrm{mmol})$ of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}^{-}$. The reaction was kept at $-78^{\circ} \mathrm{C}$ for 0.5 h and became yellow. The solution was allowed to warm to room temperature and was kept at room temperature for an additional hour. Hexanes ($10-15 \mathrm{~mL}$) was then added, and the solvents were removed under oil pump vacuum to give an offwhite powder. The powder was washed with hexanes and several small portions of ether. This material was pure by ${ }^{1} \mathrm{H}$ NMR spectroscopy and unsolvated and was used for most subsequent $10 \mathrm{t} / 10 \mathrm{k}$ experiments. The powder was taken up in $\mathrm{CHCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and crystallized by subsequent diffusion addition of ether. Thus obtained was $0.311 \mathrm{~g}(0.410 \mathrm{mmol}$, $75 \%)$ of $(90 \pm 2):(10 \pm 2) 10 \mathrm{t} / 10 \mathrm{k} \cdot\left(0.5 \mathrm{CHCl}_{3}\right)$ as greenish yellow leafs, $\mathrm{mp} 165^{\circ} \mathrm{C}$ dec. Spectroscopic data for 10 t : Table IV. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{NOP}_{2} \mathrm{Re}+0.5 \mathrm{CHCl}_{3}: \mathrm{C}, 39.30 ; \mathrm{H}, 3.16 ; \mathrm{N}, 1.79 ; \mathrm{P}, 7.93$. Found: C, 39.59; H, 3.35; N, 1.73; P, 7.68.

Preparation of $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}$ (11t/11k Equilibrium Mixture). To a $-78^{\circ} \mathrm{C}$ solution of $3(0.129 \mathrm{~g}$, 0.220 mmol) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $0.115 \mathrm{~g}(0.296 \mathrm{mmol})$ of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$. The reaction was kept at $-78^{\circ} \mathrm{C}$ for 10 min and became yellow. The solution was allowed to warm to room temperature and was kept at room temperature for an additional 2 h . The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was then removed under oil pump vacuum, and the residue was washed with hexanes. The residue was taken up in CHCl_{3}. Subsequent addition of hexanes gave a white powder which was again taken up in CHCl_{3} and crystallized by diffusion addition of hexanes. Thus obtained was 0.123 $\mathrm{g}(0.172 \mathrm{mmol}, 78 \%)$ of $(91 \pm 2):(9 \pm 2) 11 \mathrm{t} / 11 \mathrm{k}, \mathrm{mp} 120^{\circ} \mathrm{C}$ dec. Spectroscopic data for 11 t : Table IV.

Preparation of $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)\right]^{+}-$ $\mathrm{PF}_{6}{ }^{-}$(12t/12k Equilibrium Mixture). To a $-78^{\circ} \mathrm{C}$ solution of 4 (0.159 $\mathrm{g}, 0.259 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $0.120 \mathrm{~g}(0.309 \mathrm{mmol})$ of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$. The reaction was kept at $-78^{\circ} \mathrm{C}$ for 10 min and became bright yellow. The solution was allowed to warm to room temperature and was kept at room temperature for an addition 2 h . Hexanes (10 mL) was then added, and the solvents were removed under oil pump vacuum. The resulting cream powder was washed with hexanes and ether, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and layered with hexanes. This solution was stored in a freezer overnight, whereupon $0.110 \mathrm{~g}(0.145 \mathrm{mmol}, 56 \%)$ of $(90 \pm$ 2): $(10 \pm 2) \mathbf{1 2 t} / 12 \mathrm{k}$ formed as light yellow erystals, mp $172^{\circ} \mathrm{C}$ dec. Some decomposition occurred during the recrystallization. Spectroscopic data for 12t: Table IV.

Preparation of $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}(13)$. To a $-78^{\circ} \mathrm{C}$ solution of $5(0.081 \mathrm{~g}, 0.135 \mathrm{mmol})$ in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $0.062 \mathrm{~g}(0.160 \mathrm{mmol})$ of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}^{-}$. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 15 min and was then allowed to warm to room temperature. Hexanes (10 mL) was added, and the solvents were removed under oil pump vacuum. The residue was washed with hexanes followed by small amounts of ether. The residue was taken up in $\mathrm{CHCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and crystallized by diffusion addition of ether. Cream crystals of $13(0.070 \mathrm{~g}, 0.094 \mathrm{mmol}, 70 \%)$ were collected by filtration; mp $197-199^{\circ} \mathrm{C}$ (dec with gas evolution). Spectroscopic data: Table IV.

Preparation of $(\boldsymbol{R R}, \boldsymbol{S S})-\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{C}=\right.\right.$ $\left.\left.\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]^{+} \mathrm{PF}_{6}^{-}((\boldsymbol{R} \boldsymbol{R}, \boldsymbol{S S})-14)$. To a $-78{ }^{\circ} \mathrm{C}$ solution of $(S S, R R)-7$ $(0.062 \mathrm{~g}, 0.095 \mathrm{mmol})$ in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $0.045 \mathrm{~g}(0.116$ mmol) of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$. The resulting solution was stirred at low temperature for 15 min . Then hexanes (10 mL) was added, an oil pump vacuum was applied, and the solvents were removed as the reaction was allowed to warm to room temperature. This gave an off-white powder which was washed with large amounts of hexanes and assayed by ${ }^{1} \mathrm{H}$ NMR for product diastereomer purity. The powder was taken up in CHCl_{3} and crystallized by diffusion addition of ether. Yellow crystals of ($R R, S S$)-14 ($0.059 \mathrm{~g}, 0.074 \mathrm{mmol}, 78 \%$) were collected by filtration; $\mathrm{mp} 245-247^{\circ} \mathrm{C}$ (dec with gas evolution). Spectroscopic data: Table IV.

Preparation of (RS,SR)-[($\left.\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{C}=\right.$ $\left.\left.\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}((\boldsymbol{R S}, \boldsymbol{S R})-14)$. To a $-78{ }^{\circ} \mathrm{C}$ solution of $(S R, R S)-7$ $(0.203 \mathrm{~g}, 0.313 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $0.134 \mathrm{~g}(0.344$ mmol) of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$. The resulting solution was stirred at low temperature for 30 min . Then hexanes (20 mL) was added, an oil pump vacuum was applied, and the solvents were removed as the reaction was allowed to warm to room temperature. This gave a light yellow solid which was washed with hexanes and assayed by ${ }^{1} \mathrm{H}$ NMR for product diastereomer purity. The solid was taken up in $\mathrm{CH}_{3} \mathrm{CN}$ and crystallized by diffusion addition of ether. Yellow crystals of $(R S, S R)-14(0.162 \mathrm{~g}$, $0.204 \mathrm{mmol}, 65 \%$) were collected by filtration; mp $252-258^{\circ} \mathrm{C}$ (dec with gas evolution). Spectroscopic data: Table IV.

Preparation of $(\boldsymbol{R R}, \boldsymbol{S S})-\left[\left(\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathbf{R e}(\mathbf{N O})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{3}\right)\right]^{+}-$ $\mathrm{PF}_{6}{ }^{-}((\boldsymbol{R R}, \boldsymbol{S S})-15)$. To a $-78^{\circ} \mathrm{C}$ solution of $8(0.059 \mathrm{~g}, 0.101 \mathrm{mmol})$ in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $0.047 \mathrm{~g}(0.121 \mathrm{mmol})$ of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}-$. The resulting solution was stirred at low temperature for 10 min . Then hexanes (10 mL) was added, an oil pump vacuum was applied, and the
solvents were removed as the reaction was allowed to warm to room temperature. This gave a yellow solid which was washed with hexanes and assayed by ${ }^{1} \mathrm{H}$ NMR for the product diastereomer ratio (eq 6 ; a δ 5.43 impurity (ca. 13%) was also present). The solid was taken up in CHCl_{3} and crystallized by diffusion addition of ether. Yellow prisms of ($R R, S S$) - $15(0.053 \mathrm{~g}, 0.073 \mathrm{mmol}, 72 \%$) were collected by filtration; mp $200-202{ }^{\circ} \mathrm{C}$ (dec with gas evolution). Spectroscopic data: Table IV.

Preparation of $(\boldsymbol{R S}, \boldsymbol{S R})-\left[\left(\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathbf{R e}(\mathbf{N O})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{3}\right)\right]^{+}$-$\mathrm{PF}_{6}^{-}((\boldsymbol{R S}, \boldsymbol{S R})-15)$. A septum-capped test tube was charged with ($R R, S S$) $\mathbf{- 1 5}(0.063 \mathrm{~g}, 0.086 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(3.0 \mathrm{~mL})$. The solution was freeze-thaw degassed three times. The tube was heated in a $77 \pm$ $3^{\circ} \mathrm{C}$ oil bath for 125 h . Solvent was removed under oil pump vacuum, and the residue was analyzed by ${ }^{1} \mathrm{H}$ NMR (see Results). The residue was taken up in CHCl_{3} and crystallized by diffusion addition of ether. Yellow needles of $(95 \pm 1):(5 \pm 1)(R S, S R)-15 /(R R, S S)$ - 15 were collected by filtration; mp $227^{\circ} \mathrm{C}$ (dec with gas evolution). Spectroscopic data for ($R S, S R$)-15: Table IV.

Reaction of 9 with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$. Generation of $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}$(16). A septum-capped NMR tube was charged with $9(0.0266 \mathrm{~g}, 0.041 \mathrm{mmol})$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.300 \mathrm{~mL})$ and was cooled to $-78{ }^{\circ} \mathrm{C}$. Then $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}(0.019 \mathrm{~g}, 0.049 \mathrm{mmol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ $(0.200 \mathrm{~mL})$ was added via gas-tight syringe. The tube contents were mixed and transferred to a $-63^{\circ} \mathrm{C}$ NMR probe. The reaction was monitored at $20^{\circ} \mathrm{C}$ intervals as the probe was warmed from -63 to +25 ${ }^{\circ} \mathrm{C}$. At $25^{\circ} \mathrm{C}$, the reaction had turned very dark, and a considerable amount of white precipitate (insoluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{CN}$, and acetone) was present: ${ }^{1} \mathrm{H}$ NMR data $\left(\delta, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathbf{1 6 k}\left(-63{ }^{\circ} \mathrm{C}\right), 15.87$ (ddd, $\left.J_{\mathrm{H}_{\alpha}-3 \mathrm{I}_{\mathrm{P}}}=2.0 \mathrm{~Hz}, J_{\mathrm{H}_{\alpha^{-}} \mathrm{H}_{8}}=8.5 \mathrm{~Hz}, J_{\mathrm{H}_{\alpha^{-}} \mathrm{H}_{\beta^{\prime}}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.07(\mathrm{~s}, 5$ H), 4.34 (dd, $J_{H_{\beta}{ }^{-} \mathrm{H}_{\alpha}}=8.5 \mathrm{~Hz}, J_{\mathrm{H}_{\beta}-1}{ }^{-} \mathrm{H}_{\beta}=14.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.95 (dd, $\left.J_{1_{H^{\prime}}-1}{ }^{H_{\alpha}}=8.5 \mathrm{~Hz}, J_{\mathrm{H}_{\beta}-1}^{\alpha} \mathrm{H}_{\beta^{\prime}}=14.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 16 \mathrm{t}\left(25^{\circ} \mathrm{C}\right), 15.41$ (dd, $J_{H_{\alpha}-1} \mathrm{H}_{\beta}=9.8 \mathrm{~Hz}, J_{\mathrm{H}_{\alpha}-1} \mathrm{H}_{\beta^{\prime}}=6.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.89(\mathrm{~s}, 5 \mathrm{H}), 4.66$ (dd,
 $\mathrm{Hz}, J_{\mathrm{H}_{\beta^{\prime}}-1 \mathrm{H}_{\alpha}}=6.2 \mathrm{~Hz}$). Product ratios are given in eq 7 , and ${ }^{1} \mathrm{H}$ NMR data on 14 are given above.

Preparation of (SS,RR)-($\left.\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathbf{C H}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\right.$ $\left.\mathbf{C H}_{3}\right)((\boldsymbol{S S}, \boldsymbol{R} \boldsymbol{R})-17)$. To a $-78^{\circ} \mathrm{C}$ solution of $2(0.076 \mathrm{~g}, 0.133 \mathrm{mmol})$ in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $0.063 \mathrm{~g}(0.162 \mathrm{mmol})$ of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}^{-}$. The solution was stirred for 20 min at $-78^{\circ} \mathrm{C}$, and then 0.150 mL of $\mathrm{C}_{6}-$ $\mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{MgCl}(1.8 \mathrm{M}$ in THF) was added dropwise. The solution turned orange immediately and was allowed to warm to room temperature, whereupon solvent was removed under oil pump vacuum. The resulting residue was extracted with benzene and filtered through a 2 -in. silica gel plug. The benzene was removed by rotary evaporation, and the remaining orange oil was chromatographed in $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes on a $13 \times 2.5 \mathrm{~cm}$ silica gel column. The entire orange band was collected. Solvent removal gave $0.047 \mathrm{~g}(0.071 \mathrm{mmol}, 53 \%)$ of $(S S, R R)-17, \mathrm{mp}$ $193-195^{\circ} \mathrm{C}$ dec. Spectroscopic data: Tables I and II.

Preparation of (SR,RS)-($\boldsymbol{\eta}$ - $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathbf{R e}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)\right.$ $\left.\mathbf{C H}_{3}\right)((\boldsymbol{S R}, \boldsymbol{R S})-17)$. To a $-78^{\circ} \mathrm{C}$ solution of an equilibrium $\mathbf{1 0 t} / \mathbf{1 0 k}$ mixture ($0.084 \mathrm{~g}, 0.117 \mathrm{mmol}$) in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise 0.130 mL of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{MgCl}(1.8 \mathrm{M}$ in THF). The solution was stirred for 10 min at $-78^{\circ} \mathrm{C}$, and then an oil pump vacuum was applied and the solvents were removed as the reaction was allowed to warm to room temperature. The resulting residue was extracted with benzene and filtered through a 2 -in. silica gel plug. The benzene was removed to give oily orange crystals which were taken up in $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes and chromatographed on a $13 \times 2.5 \mathrm{~cm}$ silica gel column. The entire orange band was collected. Solvent removal under oil pump vacuum gave 0.065 $\mathrm{g}(0.098 \mathrm{mmol}, 84 \%)$ of a $(91 \pm 1):(9 \pm 1)(S R, R S)-17 /(S S, R R)-17\left({ }^{1} \mathrm{H}\right.$ NMR analysis) mixture as an orange powder, mp 125-128 ${ }^{\circ} \mathrm{C}$. Spectroscopic data: Tables I and II.

Preparation of (SS,RR)-[($\left.\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}\left({ }^{+} \mathrm{PMe}_{3}\right)\right.$ $\left.\left.\mathrm{CH}_{3}\right)\right] \mathrm{PF}_{6}{ }^{-}((\mathbf{S S}, \boldsymbol{R R})-18)$. To a $-78{ }^{\circ} \mathrm{C}$ solution of $2(0.106 \mathrm{~g}, 0.185$ mmol) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ was added $0.088 \mathrm{~g}(0.227 \mathrm{mmol})$ of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$. The yellow solution was stirred for 20 min at $-78^{\circ} \mathrm{C}$, and then $\mathrm{PMe}_{3}(0.020 \mathrm{~mL}, 0.197 \mathrm{mmol})$ was added dropwise. After an additional 15 min at $-78^{\circ} \mathrm{C}$, the solution was allowed to warm to room temperature. Solvent was removed under oil pump vacuum, and the residue was extracted with $\mathrm{CH}_{3} \mathrm{CN}$. Ether was added to the $\mathrm{CH}_{3} \mathrm{CN}$, and the solvents were removed to give an orange powder which was washed with ether. Thus obtained was $0.102 \mathrm{~g}(0.128 \mathrm{mmol}, 70 \%)$ of ($S S, R R$)-18: $\mathrm{mp} 224-227^{\circ} \mathrm{C}$ dec; IR ($\mathrm{cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) $\nu_{\mathrm{N}=\mathrm{o}} 1648$ (s); ${ }^{1} \mathrm{H}$ NMR ($\delta, \mathrm{CDCl}_{3}$) 7.54-7.38 (m's, 15 H), 5.24 ($\mathrm{s}, 5 \mathrm{H}$), 2.90 (m, 1 $\mathrm{H}), 1.60\left(\mathrm{~d}, J_{\mathrm{H}_{-}{ }^{31 \mathrm{p}}}=12.7 \mathrm{~Hz}, 9 \mathrm{H}\right), 1.08\left(\mathrm{dd}, J_{1_{H_{-}}^{1} \mathrm{H}_{\alpha}}=7.6 \mathrm{~Hz}\right.$, $J_{\mathrm{H}_{8}-{ }^{31} \mathrm{PMe}_{3}}=22.5 \mathrm{~Hz}, 3 \mathrm{H}$), $\mathrm{C}_{5} \mathrm{H}_{5}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $\delta 5.19 ;{ }^{13} \mathrm{C}$ NMR (ppm, acetone- d_{6}) $134.36\left(\mathrm{~d}, J^{13} \mathrm{C}{ }^{31} \mathrm{p}=9.9 \mathrm{~Hz}\right), 131.75(\mathrm{~s}), 129.79(\mathrm{~d}, J=9.7$ Hz) (ipso carbon not observed), 92.27 (s), $21.12\left(\mathrm{~s}, \mathrm{CCH}_{3}\right), 11.03\left(\mathrm{PCH}_{3}\right.$, $\mathrm{d}, J=54.2 \mathrm{~Hz}),-13.82\left(\mathrm{C}_{\alpha}, \mathrm{d}, J^{13}{ }_{\mathrm{C}}{ }^{31} \mathrm{PMMe}_{3}=29.3 \mathrm{~Hz}\right)$.

A ${ }^{1} \mathrm{H}$ NMR monitored reaction was conducted at $-78^{\circ} \mathrm{C}$ as described above with 10 k generated from $0.012 \mathrm{~g}(0.021 \mathrm{mmol})$ of 2 and 0.009 g
(0.023 mmol) of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. Following the addition of PMe_{3} $(0.002 \mathrm{~mL}, 0.020 \mathrm{mmol})$, no $(S R, R S)-18$ was detected.

Preparation of $(\boldsymbol{S R}, \boldsymbol{R S})-\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}\left({ }^{+} \mathrm{PMe}_{3}\right)\right.\right.$ $\left.\left.\mathbf{C H}_{3}\right)\right] \mathrm{PF}_{6}{ }^{-}((\boldsymbol{S} \boldsymbol{R}, \boldsymbol{R S})-18)$. A $15-\mathrm{mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of an equilibrium $10 \mathrm{t} / 10 \mathrm{k}$ mixture was cooled to $-78^{\circ} \mathrm{C}$, and $0.016 \mathrm{~mL}(0.157 \mathrm{mmol})$ of PMe_{3} was added dropwise. The solution turned orange immediately and was allowed to warm to room temperature. Solvent was removed under vacuum to give an orange solid which was washed with ether and dried under vacuum. Thus obtained was $0.085 \mathrm{~g}(0.107 \mathrm{mmol}, 74 \%)$ of a (92 $\pm 1):(8 \pm 1)(S R, R S)-18 /(S S, R R)-18$ mixture $\left({ }^{1}{ }^{1} \mathrm{H}\right.$ NMR analysis): mp $225-230^{\circ} \mathrm{C}$ dec; data on $(S R, R S)$-18, IR $\left(\mathrm{cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \nu_{\mathrm{N}}=01643(\mathrm{~s})$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\delta, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 7.52-7.31$ (m's, 15 H), 5.23 ($\mathrm{s}, 5 \mathrm{H}$), 2.85 (dq, $\left.J_{\mathrm{H}_{a}-{ }^{-} \mathrm{H}_{8}}=7.4 \mathrm{~Hz}, J_{\mathrm{H}_{a^{-}}{ }^{-3} \mathrm{PM}_{\mathrm{P}}}=20.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.63\left(\mathrm{~d}, J_{\mathrm{H}^{-31}}{ }^{31}=12.6 \mathrm{~Hz}\right.$, $9 \mathrm{H}), 1.33\left(\mathrm{dd}, J_{\mathrm{H}_{8}-1}{ }^{1} \mathrm{H}_{\alpha}=7.4 \mathrm{~Hz}, J_{\mathrm{H}_{6}-31}{ }^{31} \mathrm{PMe}_{3}=22.9 \mathrm{~Hz}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR (ppm, acetone- d_{6}) $137.52\left(\mathrm{~d}, J_{13} \mathrm{C}_{-}{ }^{31_{\mathrm{P}}}=51.4 \mathrm{~Hz}\right), 134.39(\mathrm{~d}, J=9.7 \mathrm{~Hz})$, 131.53 (s), $129.58(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 92.95$ (s), $24.01\left(\mathrm{CCH}_{3}, \mathrm{~d}, J^{1{ }^{13} \mathrm{C}-31} \mathrm{PMe}_{3}\right.$ $=4.9 \mathrm{~Hz}), 11.21\left(\mathrm{PCH}_{3}, \mathrm{~d},{ }^{{ }^{13} \mathrm{C} \mathrm{C}^{31}{ }_{\mathrm{PMe}}^{3}}=54.0 \textrm{Hz}\right),-21.09\left(\mathrm{C}_{\alpha}, \mathrm{d}\right.$, $J_{13} \mathrm{C}_{-}{ }^{31} \mathrm{PMe}_{3}=25.4 \mathrm{~Hz}$).
$\mathrm{A}^{1} \mathrm{H}$ NMR monitored reaction was conducted at $-78^{\circ} \mathrm{C}$ as described above with $0.010 \mathrm{~g}(0.014 \mathrm{mmol})$ of $\mathbf{1 0 t} / \mathbf{1 0 k}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. Following the addition of $\mathrm{PMe}_{3}(0.002 \mathrm{~mL}, 0.020 \mathrm{mmol})$, a $(88 \pm 1):(12 \pm 1)$ ratio of $(S R, R S)$-18/($S S, R R)$ - 18 was observed.

Preparation of $(\boldsymbol{S R}, \boldsymbol{R S})-\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CHDCH}_{3}\right)((S R,-$ RS) $-\mathbf{2}-\alpha-d_{1}$). To a $-78^{\circ} \mathrm{C}$ solution of $2(0.082 \mathrm{~g}, 0.143 \mathrm{mmol})$ in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ was added $0.066 \mathrm{~g}(0.170 \mathrm{mmol})$ of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$. The solution was stirred for 20 min at $-78^{\circ} \mathrm{C}$, and then $\mathrm{Li}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{BD}$ $(0.300 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF) was added dropwise. The solution turned orange. An oil pump vacuum was applied, and the solvents were removed as the reaction was allowed to warm to room temperature. The resulting residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /benzene and filtered through a silica gel plug. The solvent was removed by rotary evaporation, and the resulting orange oil was chromatographed on a $13 \times 2.5 \mathrm{~cm}$ silica gel column with $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes. The orange band was collected. Solvent removal under oil pump vacuum gave $0.057 \mathrm{~g}(0.099 \mathrm{mmol}, 70 \%)$ of ($S R, R S$) $-2-\alpha-d_{1}$ as an orange powder. ${ }^{1} \mathrm{H}$ NMR: as for 2 (Table I), but no $\delta 2.10$ resonance.

Preparation of $(\boldsymbol{S S}, \boldsymbol{R} \boldsymbol{R})-\left(\boldsymbol{\eta}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathbf{R e}(\mathbf{N O})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CHDCH}_{3}\right)((\boldsymbol{S S},-$ $\boldsymbol{R R})-\mathbf{2 - \alpha}-\boldsymbol{d}_{\mathrm{t}}$). To a $-78{ }^{\circ} \mathrm{C}$ solution of an equilibrium $10 \mathrm{t} / \mathbf{1 0 \mathrm { k }}$ mixture ($0.201 \mathrm{~g}, 0.281 \mathrm{mmol}$) in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise 0.320 mL of $\mathrm{Li}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{BD}(1.0 \mathrm{M}$ in THF). The solution was stirred for 15 min at $-78^{\circ} \mathrm{C}$ and then allowed to warm to room temperature. Solvent was removed under oil pump vacuum, and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /benzene and filtered through a $2-\mathrm{in}$. silica gel plug. The solvent was removed, and the resulting orange oil was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes to give $0.080 \mathrm{~g}(0.139 \mathrm{mmol}, 50 \%)$ of a (89 ± 2) : (11 $\pm 2)(S S, R R)-2-\alpha-d_{1} /(S R, R S)-2-\alpha-d_{1}$ mixture (as determined from the relative integration of the diastereotopic H_{α}).

Reactions of $2-\alpha-d_{1}$ with $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$. The following experiment is representative. A septum-capped NMR tube was charged with ($S R$,$R S)-2-\alpha-d_{1}(0.015 \mathrm{~g}, 0.026 \mathrm{mmol})$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.350 \mathrm{~mL})$. The tube was cooled to $-78{ }^{\circ} \mathrm{C}$, and $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}(0.012 \mathrm{~g}, 0.031 \mathrm{mmol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ $(0.250 \mathrm{~mL})$ was added via gas tight syringe. The tube was quickly transferred to a $-70^{\circ} \mathrm{C}$ NMR probe. A ${ }^{1} \mathrm{H}$ NMR spectrum showed that 10 k had formed. Integration of the $\mathrm{Re}=\mathrm{CH}$ and CH_{3} resonances indicated a $10 \mathrm{k}-\alpha-d_{0} / 10 \mathrm{k}-\alpha-d_{1}$ ratio of $\gtrsim 99: 1$. The sample was warmed to room temperature. A similar integration indicated a $10 \mathrm{t}-\alpha-d_{0} / \mathbf{1 0 t}-\alpha-d_{1}$ ratio of $\gtrsim 97: 3$.

Preparation of $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{CHCD}_{3}\right)\right]^{+} \mathrm{PF}_{6}^{-}\left(\mathbf{1 0}-\boldsymbol{\beta}-\boldsymbol{d}_{3}\right)$. A Schlenk flask was charged with $0.375 \mathrm{~g}(0.523 \mathrm{mmol})$ of an equilibrium $10 \mathrm{t} / 10 \mathrm{k}$ mixture and 4.0 mL of acetone- d_{6}. The solution was stirred for 4 days at room temperature, whereupon solvent was removed under oil pump vacuum. The residue was taken up in $\mathrm{CHCl} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and crystallized by subsequent diffusion addition of ether. This gave 0.300 $\mathrm{g}(0.394 \mathrm{mmol}, 75 \%)$ of $\mathbf{1 0}-\beta-d_{3} \cdot 0.5 \mathrm{CHCl}_{3}$ as off yellow plates. Deuterium incorporation ranged from 81% to $>98 \%$.

Other Experiments Utilizing Deuterated Rhenium Complexes. Synthesis of and experiments with other deuterated complexes were conducted as outlined in the Results using procedures analogous to those given for the undeuterated complexes. Full details are given elsewhere. ${ }^{42}$ Representative experiments follow.

To a $-78^{\circ} \mathrm{C}$ solution of $2-\alpha-d_{2}(0.104 \mathrm{~g}, 0.181 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $0.077 \mathrm{~g}(0.199 \mathrm{mmol})$ of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$. The resulting bright yellow solution was stirred at $-78^{\circ} \mathrm{C}$ for 15 min and then allowed to warm to room temperature. After 1 h at room temperature, solvent was removed under oil pump vacuum and the residue was extracted with hexanes. The hexanes were removed by rotary evaporation, and the residue was recrystallized from hot 95% ethanol. Triphenylmethane ($0.055 \mathrm{~g}, 0.143 \mathrm{mmol}, 79 \%$) was obtained as white fluffly crystals. The
(42) Kiel, W. A. Ph.D. Thesis, UCLA, 1982.
mass spectrum (70 eV) of this material showed a $40.6: 100 \mathrm{~m} / \mathrm{e}$ 244:245 ratio. That for authentic $\mathrm{Ph}_{3} \mathrm{CD}$ is $40.3: 100$. A $\mathrm{Ph}_{3} \mathrm{CD} / \mathrm{Ph}_{3} \mathrm{CH}$ ratio of $(96 \pm 1):(4 \pm 1)$ was calculated. The residue remaining after the hexanes extraction was taken up in CHCl_{3}. Ethylidene $\mathbf{1 0}$ was isolated by a procedure similar to the one given above. The $\mathrm{H}_{\alpha}{ }^{1} \mathrm{H}$ NMR resonance was absent, and the $\mathrm{H}_{\beta}{ }^{1} \mathrm{H}$ NMR resonance ($\delta 2.52$) was a singlet.

A septum-capped NMR tube was charged with $5-\alpha-d_{2}(0.027 \mathrm{~g}, 0.044$ $\mathrm{mmol})$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.350 \mathrm{~mL})$. The tube was cooled to $-78^{\circ} \mathrm{C}$, and $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}^{-}(0.019 \mathrm{~g}, 0.049 \mathrm{mmol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.200 \mathrm{~mL})$ was slowly added. After a thorough shaking, the tube was quickly transferred to a $-73^{\circ} \mathrm{C}$ NMR probe. $\mathrm{A}^{1} \mathrm{H}$ NMR spectrum showed the clean formation of $13-d_{2}$; no olefinic protons were detectable. The sample was warmed to room temperature, which allowed (as a result of slight chemical shift changes) the detection of $\mathrm{Ph}_{3} \mathrm{CH}$ ($\delta 5.54$). Solvent was removed from the reaction mixture, and the residue was applied to a silica gel preparative TLC plate. Elution with 1:4 ethyl acetate/hexanes gave a UVactive band with a R_{f} of ca. 0.7 . Triphenylmethane $(0.014 \mathrm{~g}, 0.036$ $\mathrm{mmol}, 82 \%$) was isolated from this band. Its $70-\mathrm{eV}$ mass spectrum gave a $100: 18.6 \mathrm{~m} / e 244: 245$ ratio, which was identical with that observed in commercial $\mathrm{Ph}_{3} \mathrm{CH}$.

A septum-capped NMR tube was charged with $2(0.0101 \mathrm{~g}, 0.0176$ $\mathrm{mmol}), 2-\alpha-d_{2}(0.0104 \mathrm{~g}, 0.0180 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.300 \mathrm{~mL})$. The tube was freeze-thaw degassed three times and cooled to $-78^{\circ} \mathrm{C}$. Then 0.100 mL of a 0.071 M solution of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}^{-}$in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.0071 \mathrm{mmol}$, 0.20 equiv) was added via gas-tight syringe. The reaction was kept at $-78^{\circ} \mathrm{C}$ for 0.5 h and then allowed to warm to room temperature over the course of 3 h . The content of the NMR tube were applied to a preparative TLC plate, and the triphenylmethane was isolated as described in the preceding paragraph. Analysis of the m / e 244:245 ratio in the $70-\mathrm{eV}$ mass spectrum indicated a $(84 \pm 1):(16 \pm 1) \mathrm{Ph}_{3} \mathrm{CH} /$ $\mathrm{Ph}_{3} \mathrm{CD}$ ratio.

A septum-capped NMR tube was charged with ($S S, R R$)-7 (0.0089 $\mathrm{g}, 0.0137 \mathrm{mmol}),(S S-R R)-7-\beta-d_{3}(0.0092 \mathrm{~g}, 0.0141 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$(0.300 \mathrm{~mL})$. The tube was freeze-thaw degassed three times and cooled to $-78{ }^{\circ} \mathrm{C}$. Then 0.100 mL of a 0.056 M solution of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}{ }^{-}$in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($0.0056 \mathrm{mmol}, 0.20$ equiv) was added via gas-tight syringe. The reaction was kept at $-78^{\circ} \mathrm{C}$ for 0.5 h and then allowed to warm to room temperature over the course of 3 h . The contents of the NMR tube were applied to a preparative TLC plate and the triphenylmethane was isolated as described above. Analysis of the $m / e 244: 245$ ratio in the $70-\mathrm{eV}$ mass spectrum indicated a $(86 \pm 1):(14 \pm 1) \mathrm{Ph}_{3} \mathrm{CH} / \mathrm{Ph}_{3} \mathrm{CD}$ ratio.

Acknowledgment. This investigation was supported by the Department of Energy (regiochemistry) and the NIH (Grant GM 29026-01; stereochemistry). FT NMR and mass spectral measurements made use of spectrometers obtained via NSF Departmental instrumentation grants and the University of Utah Institution Funds Committee. W.A.K. thanks the Regents of the University of California for a Fellowship.

Registry No. 1, 71763-23-0; 2, 74540-90-2; 2- $\alpha-d_{2}, 74540-81-1$; $(S R, R S)-2-\alpha-d_{1}, 85926-89-2 ;(S S, R R)-2-\alpha-d_{1}, 85955-96-0 ; 3,74540-$ 91-3; 4, 85926-72-3; 5, 85926-73-4; 5- $\alpha-d_{2}, 85939-48-6 ; 6,85926-74-5 ;$ ($S S, R R$)-7, 82399-54-0; ($(S R, R S)-7,82374-39-8 ; 8,85956-36-1 ; 9$, 85926-75-6; 10k, 74540-80-0; 10t, 74561-66-3; 10k- $\alpha-d_{1}, 85955-98-2$; 10t- $\alpha-d_{1}, 85956-00-9 ; 10-\beta-d_{3}, 85926-91-6 ; 11 k, 74540-85-5 ; 11 \mathrm{t}$, 74561-68-5; 12k, 85926-77-8; 12t, 85955-88-0; 13, 85926-83-6; ($R R$,$S S)$-14, 85926-79-0; ($R S, S R$)-14, 85955-90-4; ($R R, S S$)-15, 85926-81-4; ($R S, S R$)-15, 85955-92-6; 16k, 85926-85-8; 16t, 85956-02-1; ($S S$,$R R)$-17, 85926-86-9; ($S R, R S$)-17, 85955-93-7; ($S S, R R$)-18, 85926-88-1; $(S R, R S)-18,85955-95-9 ;\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{3}\right), 71763-18-3$; $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{COCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 82582-48-7 ; \quad\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}-$ $(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 82293-79-6 ; \mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}^{-}, 437-17-2 ; \mathrm{Li}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~B}-$ D, $74540-86-6 ; \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}, 100-39-0 ; \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}, 108-86-1$; PMe_{3}, 594-09-2.

Are the Silacyclopentadienyl Anion and the Silacyclopropenyl Cation Aromatic?

Mark S. Gordon,* Philip Boudjouk, and Freidun Anwari
Contribution from the Department of Chemistry, North Dakota State University, Fargo, North Dakota 58105. Received October 25, 1982

Abstract

Stabilization energies attributable to aromaticity in the silacyclopentadienyl anion and the silacyclopropenyl cation were found to be small in the former and absent in the latter when calculated from bond-separation reactions employing 3-21G and STO-2G basis sets. The silacyclopentadienyl anion is approximately 25% as aromatic as the all-carbon analogue whereas silabenzene is more than 80% as aromatic as benzene. The introduction of diffuse functions into the basis sets has only a small effect on these results. The silacyclopropenyl cation is actually destabilized but strain is probably a key factor in the comparison. Also found was that the STO-2G basis set gives geometries and relative energies consistent with those of a larger basis set and that the semiempirical INDO method may be useful for predicting the structures of larger systems for which geometry optimizations even with STO-2G may be too time consuming.

The long-standing interest on the part of chemists in isolating and characterizing unsaturated silicon has dramatically increased in intensity in the past 10 years. ${ }^{1}$ With the exception of a few papers, ${ }^{2}$ however, relatively little attention has been paid to the

[^8]subject of aromatic silicon. From a computational point of view, part of the reason for this is that the size of aromatic systems prevents extensive ab initio calculations with large basis sets.

The present paper has two goals: to investigate the possibility of aromaticity in two simple silacyclo ions and to assess potentially time-saving approaches to larger systems. The $4 n+2 \pi$ electron network in the cyclopentadienyl anion is isoelectronic with that in benzene, and the six π electrons are spread symmetrically among the five carbons in the ion. As a result, one might expect substantial delocalization stabilization in the latter. Silabenzene is apparently nearly as aromatic as benzene; ${ }^{2 b}$ thus, similar comments presumably apply to the silacyclopentadienyl anion. In the latter system, however, the symmetry is partially destroyed, so the negative charge need not be spread evenly throughout the mol-

[^0]: (1) (a) University of California. (b) University of Utah.
 (2) To whom correspondence should be addressed at the Department of Chemistry, University of Utah, Salt Lake City, UT 84112. Fellow of the Alfred P. Sloan Foundation (1980-1984) and Camille and Henry Dreyfus Teacher-Scholar Grant Recipient (1980-1985).
 (3) Kochi, J. K. "Organometallic Mechanisms and Catalysis"; Academic Press: New York, 1978; Chapter 12.
 (4) (a) Whitesides, G. M.; Gaasch, J. F.; Stedronsky, E. R. J. Am. Chem. Soc. 1972, 94, 5258. (b) Reger, D. L.; Culbertson, E. C. Ibid. 1976, 98, 2789. (c) Kazlauskas, R. J.; Wrighton, M. S. Ibid. 1982, 104, 6005.
 (5) James, B. R. Adv. Organomet. Chem. 1979, 17, 319.
 (6) (a) Green, M. L. H.; Nagy, P. L. 1. J. Organomet. Chem. 1963, $1,58$. (b) Laycock, D. E.; Hartgerink, J.; Baird, M. C. J. Org. Chem. 1980, 45, 291 and references therein. (c) Mink, R. 1.; Welter, J. J.; Young, P. R.; Stucky, G. D. J. Am. Chem. Soc. 1979, 101, 6928.
 (7) (a) Schrock, R. R. Acc. Chem. Res. 1979, 12, 98 . (b) Davidson, P. J.; Lappert, M. F.; Pearce, R. Chem. Rev. 1976, 76, 219. (c) Schrock, R. R.; Parshall, G. W. Ibid. 1976, 76, 243. (d) Cooper, N. J.; Green, M. L. H. J. Chem. Soc., Dalton Trans. 1979, 1121 . (e) Hayes, J. C.; Pearson, G. D. N.; Cooper, N. J. J. Am. Chem. Soc. 1981, $103,4648$.
 (8) (a) Sanders, A.; Bauch, T.; Magatti, C. V.; Lorenc, C.; Giering, W. P. J. Organomet. Chem. 1976, 107, 359. (b) Fellmann, J. D.; Schrock, R. R.; Traficante, D. D. Organometallics 1982, 1, 481. (c) Turner, H. W.; Schrock, R. R. J. Am. Chem. Soc. 1982, 104, 2331. (d) Hayes, J. C.; Cooper, N. J. Ibid. 1982, 104, 5570.

[^1]: (9) Calderon, N.; Lawrence, J. P.; Ofstead, E. A. Adv. Organomet. Chem. 1979, 17, 449.
 (10) Ivin, K. J.; Rooney, J. J.; Stewart, C. D.; Green, M. L. H.; Mahtab, R. J. Chem. Soc., Chem. Commun. 1978, 604.
 (11) Theoretical studies: (a) Goddard, R. J.; Hoffmann, R.; Jemmis, E. D. J. Am. Chem. Soc. 1980, 102, 7667. (b) Reetz, M. T.; Stephan, W. J. Chem. Res., Synop. 1981, 44.
 (12) Kiel, W. A.; Lin, G.-Y.; Gladysz, J. A. J. Am. Chem. Soc. 1980, 102, 3299
 (13) (a) A detailed study of the reaction of $\mathrm{Ph}_{3} \mathrm{C}^{+} \mathrm{PF}_{6}^{-}$with $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ $\operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ is reported separately. ${ }^{13 \mathrm{~b}}$ (b) Kiel, W. A.; Lin, G.-Y.; Constable, A. G.; McCormick, F. B.; Strouse, C. E.; Eisenstein O.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104, 4865.
 (14) Tam, W.; Lin, G.-Y.; Wong, W.-K.; Kiel, W. A.; Wong, V. K.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104, 141.

[^2]: (21) Characteristic upfield shifts of the olefin ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts are observed, and the larger olefinic ${ }^{3} J_{1}{ }_{\mathrm{H}-1}{ }^{1} \mathrm{H}$ are assigned as $J_{\text {Irans }}$, as established in the following studies of $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})(\mathrm{L})(\mathrm{HRC}=\right.$ $\left.\left.\mathrm{CR}^{\prime} \mathrm{R}^{\prime \prime}\right)\right]^{+}$: (a) $\mathrm{L}=\mathrm{CO}$: Cutler, A.; Ehntholt, D.; Giering, W. P.; Lennon, P.; Raghu, S.; Rosan, A.; Rosenblum, M.; Tancrede, J.; Wells, D. J. Am. Chem. Soc. 1976, 98, 3495. Laycock, D. E.; Baird, M. C. Inorg. Chim. Acta 1980, 42, 263. (b) L = PPh_{3} : Reger, D. L.; Coleman, C. J.; McElligott, P. J. J. Organomet. Chem. 1979, 171, 73. (c) $\mathrm{L}=\mathrm{P}\left(\mathrm{OPh}_{3}\right)_{3}$: Reger, D. L.; Coleman, C. J. Inorg. Chem. 1979, 18, 3155.

[^3]: 98.79 phenyl, 127.92, 128.54, 129.25,
 $130.57\left(\mathrm{~d},{ }^{1{ }^{13}} \mathbf{C}-{ }^{31} \mathrm{P}=10.9 \mathrm{~Hz}\right)$, $131.54(\mathrm{~d}, J=59.7 \mathrm{~Hz}), 133.29$ $134.34(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 141.24$

[^4]: (22) (a) March, J, "Advanced Organic Chemistry", 2nd ed.; McGraw-Hill: New York, 1978; pp 836-840. (b) Reetz, M. T.; Stephan, W. Angew. Chem., Int. Ed. Engl. 1977, 16, 44.
 (23) Wong, A.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104, 4948.
 (24) McCormick, F. B.; Kiel, W. A.; Gladysz, J. A. Organometallics 1982, 1, 405.

[^5]: (25) Sharp, P. R.; Schrock, R. R. J. Organomet. Chem. 1979, 171, 43.
 (26) Marsella, J. A.; Folting, K.; Huffman, J. C.; Caulton, K. G. J. Am. Chem. Soc. 1981, 103, 5596.
 (27) Brookhart, M.; Tucker, J. R.; Husk, G. R. J. Am. Chem. Soc. 1983, 105, 258.

[^6]: (28) Slack, D.; Baird, M. C. J. Chem. Soc., Chem. Commun. 1974, 701.
 (29) Hannon, S. J.; Traylor, T. G. J. Org. Chem. 1981, 46, 3645.
 (30) Schwartz, J.; Labinger, J. A. Angew. Chem., Int. Ed. Engl. 1976. 15, 333.
 (31) Our convention for converting planar representations of diastereomeric olefin complexes (eq 5-7,10,11) into three-dimensional structures is as follows: $(R R, S S)-14$ (eq 5) \equiv V1 (Figure 4) and ($R S, S R$)-14 $\equiv 1 \mathrm{X}$.
 (32) Buhro, W. E.; Patton, A. T.; Strouse, C. E.; Gladysz, J. A.; McCormick, F. B.: Etter, M. C. J. Am. Chem. Soc. 1983, 105. 1056.

[^7]: (35) Casey, C. P.; Miles, W. H.; Tukada, H.; O'Connor, J. M. J. Am. Chem. Soc. 1982, 104, 3761.

[^8]: (1) L. E. Gusel'nikov and N. S. Nametkin, Chem. Rev., 1979, 79, 531
 (2) (a) T. J. Barton and D. S. Banasiak, J. Am. Chem. Soc., 1977, 99 , 5199; T. J. Barton and G. T. Burns, ibid., 1978, 100, 5199; H. Bock, A. Bowling, B. Solouki, T. J. Barton, and G. T. Burns, ibid., 1980, 102, 429; C. L. Kreil, D. L. Chapman, G. T. Burns, and T. J. Barton, ibid., 1980, 102, 841 ; G. Maier, G. Mihm, and H. P. Reisenhauer, Angew. Chem., 1980, 92, 58 [Angew. Chem., Int. Ed. Engl., 1980, 19, 52]; B. Solouki, P. Rosmos, H. Bock, and G. Maier, Angew. Chem., 1980, 92, 56 [Angew. Chem., Int. Ed. Engl., 1980, 19, 51]; T. J. Barton and M. Vuper, J. Am. Chem. Soc., 1981, 103 6788. (b) H. B. Schlegel, B. Coleman, and M. Jones, ibid., 1978, 100, 6499; P. H. Blustin, J. Organomet. Chem., 1979, 166, 21.

